分析 (1)取AB中點(diǎn)G,則四邊形BCEF的面積為$\frac{1}{2}{S_{梯形ABCD}}={S_{梯形BCEG}}+{S_{△EFG}}$,求出GF,即可求灌溉水管EF的長度;
(2)△ADC中,由余弦定理,得$EF=\sqrt{{a^2}+{b^2}-ab}≥\sqrt{ab}=\sqrt{3}$,即可求灌溉水管EF的最短長度.
解答 解:(1)因?yàn)锳D=DC=2,BC=1,∠ABC=∠BAD=90°,
所以$AB=\sqrt{3}$,…(2分)
取AB中點(diǎn)G,則四邊形BCEF的面積為$\frac{1}{2}{S_{梯形ABCD}}={S_{梯形BCEG}}+{S_{△EFG}}$,
即$\frac{1}{2}×\frac{1}{2}×\sqrt{3}(1+2)$=$\frac{1}{2}×\frac{{\sqrt{3}}}{2}(1+\frac{3}{2})+\frac{1}{2}GF×\frac{3}{2}$,
解得$GF=\frac{{\sqrt{3}}}{6}$,…(6分)
所以$EF=\sqrt{{{(\frac{3}{2})}^2}+{{(\frac{{\sqrt{3}}}{6})}^2}}=\frac{{\sqrt{21}}}{3}$(km).
故灌溉水管EF的長度為$\frac{{\sqrt{21}}}{3}$km.…(8分)
(2)設(shè)DE=a,DF=b,在△ABC中,$CA=\sqrt{{1^2}+{{(\sqrt{3})}^2}}=2$,
所以在△ADC中,AD=DC=CA=2,
所以∠ADC=60°,
所以△DEF的面積為${S_{△DEF}}=\frac{1}{2}absin60°=\frac{{\sqrt{3}}}{4}ab$,
又${S_{梯形ABCD}}=\frac{{3\sqrt{3}}}{2}$,所以$\frac{{\sqrt{3}}}{4}ab=\frac{{3\sqrt{3}}}{4}$,即ab=3.…(12分)
在△ADC中,由余弦定理,得$EF=\sqrt{{a^2}+{b^2}-ab}≥\sqrt{ab}=\sqrt{3}$,
當(dāng)且僅當(dāng)$a=b=\sqrt{3}$時(shí),取“=”.
故灌溉水管EF的最短長度為$\sqrt{3}$km.…(16分)
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查基本不等式的運(yùn)用,考查余弦定理,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,40] | B. | [160,+∞) | C. | (-∞,40)∪(160,+∞) | D. | (-∞,40]∪[160,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com