(本題滿分14分)直線過點,傾斜角的正弦是,求直線 的方程.

 

【答案】

解:因為傾斜角的范圍是:,又由題意:,所以:,

直線過點 ,由直線的點斜式方程得到:

即:

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

         如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點,F(xiàn)是AB中點,

   (1)求證:

   (2)當E是棱CC1中點時,求證:CF//平面AEB1;

   (3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆浙江省臺州市高三調研考試理數(shù) 題型:解答題

()(本題滿分14分)
如圖,菱形與矩形所在平面互相垂直,

(Ⅰ)求證:平面;
(Ⅱ)若,當二面角為直二面角時,求的值;
(Ⅲ)在(Ⅱ)的條件下,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省陸豐市高二第三次月考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分14分)

如圖, 在直三棱柱中,,

(1)求證:;

(2)問:是否在線段上存在一點,使得平面

若存在,請證明;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東惠陽一中實驗學校高二6月月考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分14分)如圖, 在直三棱柱中,,

,點的中點.

⑴求證:

⑵求證:平面;

⑶求二面角的正切值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省高三綜合測試數(shù)學理卷 題型:解答題

(本題滿分14分) 已知矩形ABCD,AD=2AB=2,點E是AD的中點,將△DEC

沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。

(Ⅰ) 證明:BE⊥CD’;

(Ⅱ) 求二面角D'-BC -E的余弦值,

 

 

查看答案和解析>>

同步練習冊答案