如圖,在正方形ABCD-A1B1C1D1中,直線AB1和平面A1B1CD所成角( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考點(diǎn):直線與平面所成的角
專題:空間角
分析:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AB1和平面A1B1CD所成角.
解答: 解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,
建立空間直角坐標(biāo)系,
設(shè)正方形ABCD-A1B1C1D1的棱長(zhǎng)為1,
則A(1,0,0),B1(1,1,1),
C(0,1,0),D(0,0,0),
AB1
=(0,1,1),
DB1
=(1,1,1),
DC
=(0,1,0),
設(shè)平面A1B1CD的法向量
n
=(x,y,z),
n
DB1
=x+y+z=0
n
DC
=y=0

取x=1,得
n
=(1,0,-1),
設(shè)直線AB1和平面A1B1CD所成角為θ,
sinθ=|cos<
n
,
AB1
>|=|
-1
2
×
2
|=
1
2

θ=
π
6

故選:A.
點(diǎn)評(píng):本題考查直線與平面所成角的大小的求法,是中檔題,解題時(shí)要注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=
2x-3(x>0)
f(x)(x<0)
是奇函數(shù),則f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
2+4x

(1)證明:y=f(x)的圖象關(guān)于點(diǎn)P(
1
2
,
1
2
)對(duì)稱;
(2)求f(-100)+f(-99)+…+f(101);
(3)求f(
0
n
)+f(
1
n
)+…+f(
n-1
n
)+f(
n
n
)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
5
-
y2
4
=1的左、右焦點(diǎn),P(3,1)為雙曲線內(nèi)一點(diǎn),點(diǎn)A在雙曲線上,則|AP|+|AF2|的最小值為(  )
A、
37
+4
B、
37
-4
C、
37
-2
5
D、
37
+2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4sin(
2x
3
+
π
6
)-3.
(1)當(dāng)x∈[0,π],求f(x)的值域;
(2)求f(x)的增區(qū)間;
(3)說明函數(shù)f(x)=4sin(
2x
3
+
π
6
)-2是由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若c=2,C=
π
3
m
=(a,b),
p
=(b-2,a-2),且
m
p
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a10=23,a25=-22,Sn為其前n項(xiàng)和
(1)該數(shù)列從第幾項(xiàng)開始為負(fù)數(shù);
(2)求Sn;
(3)求使Sn<0的最小的正整數(shù)n,
(4)求Tn=|a1|+|a2|+…+|an|的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系.直線l的極坐標(biāo)方程為ρcos(θ-
π
3
)=
a-b
2
,與曲線C:ρ=
2
交于A,B兩點(diǎn),已知|AB|≥
6

(1)求直線l與曲線C的直角坐標(biāo)方程;
(2)若動(dòng)點(diǎn)P(a,b)在曲線C圍城的區(qū)域內(nèi)運(yùn)動(dòng),求點(diǎn)P所表示的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過三點(diǎn)(0,0)(1,1)(4,2)的圓的圓心坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案