18.已知直線l∥平面α,P∈α,那么過點(diǎn)P且平行于直線l的直線( 。
A.有無數(shù)條,不一定在平面α內(nèi)B.只有一條,不在平面α內(nèi)
C.有無數(shù)條,一定在平面α內(nèi)D.只有一條,且在平面α內(nèi)

分析 過一點(diǎn)有且只有一條直線與已知直線平行.由于點(diǎn)p在面內(nèi),所以直線也就在平面內(nèi).

解答 解:證明:假設(shè)過點(diǎn)P且平行于l的直線有兩條m與n,
∴m∥l且n∥l
由平行公理可得m∥n.
這與兩條直線m與n相交于點(diǎn)P相矛盾.
又∵點(diǎn)P在平面內(nèi),
∴點(diǎn)P且平行于l的直線有一條且在平面內(nèi),
∴假設(shè)錯(cuò)誤.
所以直線l∥平面α,P∈α,那么過點(diǎn)P且平行于直線l的直線只有一條,且在平面α內(nèi).
故選D.

點(diǎn)評(píng) 空間中直線與平面的位置關(guān)系.過一點(diǎn)有且只有一條直線與已知直線平行.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,
(1)求m,n的取值.
(2)比較甲、乙兩組數(shù)據(jù)的穩(wěn)定性,并說明理由.
注:方差公式s2=$\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}+\overline{x})^{2}}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中的奇函數(shù)是( 。
A.f(x)=x+1B.f(x)=3x2-1C.f(x)=2(x+1)3-1D.f(x)═-$\frac{4}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某校高二年級(jí)共1000名學(xué)生,為了調(diào)查該年級(jí)學(xué)生視力情況,若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號(hào)為000,001,002,…,999,若抽樣時(shí)確定每組都是抽出第2個(gè)數(shù),則第6組抽出的學(xué)生的編號(hào)101.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.給出如圖算法:
試問:當(dāng)循環(huán)次數(shù)為n(n∈N*)時(shí),若S<M對(duì)一切n(n∈N*)都恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為邊AA1的中點(diǎn),P為側(cè)面BCC1B1上的動(dòng)點(diǎn),且A1P∥平面CED1.則點(diǎn)P在側(cè)面BCC1B1軌跡的長(zhǎng)度為( 。
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線m和平面α,β,若α⊥β,m⊥α,則( 。
A.m⊥βB.m∥βC.m?βD.m∥β或m?β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.log${\;}_{\sqrt{2}}}$2$\sqrt{2}$+log23•log34=5,當(dāng)a<0時(shí),$\sqrt{a^2}$•$\root{3}{a^3}$•a-1=-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.正方體ABCD-A1B1C1D1中,點(diǎn)E為A1D1的中點(diǎn),則直線AE與平面ABCD所成角的正切值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案