已知其中.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在區(qū)間內(nèi)恰有兩個零點(diǎn),求的取值范圍;

(3)當(dāng)時,設(shè)函數(shù)在區(qū)間上的最大值為最小值為,記,求函數(shù)在區(qū)間上的最小值.

 

【答案】

(1)增區(qū)間:;減區(qū)間:;(2) ;(3).

【解析】

試題分析:

(Ⅰ)f′(x)=x2+(1-a)x-a=(x+1)(x-a),又a>0,

∴當(dāng)x<-1時,f′(x)>0,f(x)單調(diào)遞增;當(dāng)-1<x<a時,f′(x)<0,f(x)單調(diào)遞減;當(dāng)x>a時,f′(x)>0,f(x)單調(diào)遞增.

所以f(x)的單調(diào)增區(qū)間為:(-∞,-1),(a,+∞);單調(diào)減區(qū)間為:(-1,a).

(Ⅱ)由(Ⅰ)知f(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,從而函數(shù)f(x)在(-2,0)內(nèi)恰有兩個零點(diǎn)當(dāng)且僅當(dāng),解得。

所以a的取值范圍是

(Ⅲ)a=1時,,由(Ⅰ)知f(x)在[-3,-1]上單調(diào)遞增,在[-1,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增.

(1)當(dāng)t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調(diào)遞增,在[-1,t+3]上單調(diào)遞減,因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)="-" ,而最小值m(t)為f(t)與f(t+3)中的較小者.由f(t+3)-f(t)=3(t+1)(t+2)知,當(dāng)t∈[-3,-2]時,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上單調(diào)遞增,因此f(t)≤f(-2)="-" ,g(t)在[-3,-2]上的最小值為g(-2)="-" -(-)= 。

(2)當(dāng)t∈[-2,-1]時,t+3∈[1,2],且-1,1∈[t,t+3].下面比較f(-1),f(1),f(t),f(t+3)的大。蒮(x)在[-2,-1],[1,2]上單調(diào)遞增,有f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-,f(-1)=f(2)=-,從而M(t)=f(-1)=-,m(t)=f(1)=-,所以g(t)=M(t)-m(t)=。

綜上,函數(shù)g(t)在區(qū)間[-3,-1]上的最小值為

考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;函數(shù)的零點(diǎn);利用導(dǎo)數(shù)研究函數(shù)的最值。

點(diǎn)評:本題考查了應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)以及函數(shù)在閉區(qū)間上的最值問題,同時考查分析問題、解決問題的能力以及分類討論的數(shù)學(xué)思想.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-3cos θ,4cos θ),其中θ∈(2kπ+
π
2
,2kπ+π)
(k∈Z),
(1)求角α的正弦函數(shù)值及余弦函數(shù)值;
(2)求
sin(α-π)cos(2π-α)sin(-α+
2
)
cos(π-α)sin(π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)一模)已知等差數(shù)列{an}滿足:a1+a2n-1=2n,(n∈N*),設(shè)Sn是數(shù)列{
1an
}的前n項和,記f(n)=S2n-Sn,
(1)求an;(n∈N*)
(2)比較f(n+1)與f(n)的大;(n∈N*)
(3)如果函數(shù)g(x)=log2x-12f(n)(其中x∈[a,b])對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,那么a、b應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標(biāo)高一版(必修3) 2009-2010學(xué)年 第32期 總188期 北師大課標(biāo)版 題型:013

下列算法:

①求和:1+2+3+…+1000;

②已知兩個數(shù)求它們的商;

③已知函數(shù)定義在區(qū)間上,將區(qū)間十等分求端點(diǎn)及各分點(diǎn)處的函數(shù)值;

④已知三角形的一邊長及此邊上的高,求其面積.其中可能要用到循環(huán)結(jié)構(gòu)的是

[  ]
A.

①②

B.

①③

C.

①④

D.

③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:“伴你學(xué)”新課程 數(shù)學(xué)·必修3、4(人教B版) 人教B版 題型:013

下列算法:

①求和1+2+3+…+1000;

②已知兩個數(shù)求它們的商;

③已知函數(shù)f(x)定義在區(qū)間[a,b]上,將區(qū)間[a,b]十等分,求端點(diǎn)及各分點(diǎn)處的函數(shù)值;

④已知三角形的三邊求其面積.

其中可能要用到循環(huán)結(jié)構(gòu)的是

[  ]

A.①②

B.①③

C.①④

D.③④

查看答案和解析>>

同步練習(xí)冊答案