【題目】已知函數(shù).

1)若上恒成立,求實(shí)數(shù)的取值范圍;

2)若函數(shù),求函數(shù)的值域.

【答案】1;(2)見解析.

【解析】

1)由參變量分離法得出上恒成立,構(gòu)造函數(shù),考查該函數(shù)在的單調(diào)性,利用單調(diào)性得出,于此可得出實(shí)數(shù)的取值范圍;

2)先得出,換元,將問題轉(zhuǎn)化為求函數(shù)上的值域問題求解,然后分、三種情況討論,可得出函數(shù)上的值域,即為函數(shù)的值域.

1)當(dāng)時(shí),,由,即,

構(gòu)造函數(shù),其中,則,

所以,函數(shù)在區(qū)間上為增函數(shù),則,

由于不等式上恒成立,所以,,因此,實(shí)數(shù)的取值范圍是;

2)由題意可得,令,則,其中.

①當(dāng)時(shí),,該函數(shù)的值域?yàn)?/span>;

②當(dāng)時(shí),由于二次函數(shù)的圖象開口向下,對(duì)稱軸為直線

此時(shí),函數(shù)上單調(diào)遞減,所以,

此時(shí),該函數(shù)的值域?yàn)?/span>;

③當(dāng)時(shí),由于二次函數(shù)的圖象開口向上,對(duì)稱軸為直線,

此時(shí),該函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,

,此時(shí),該函數(shù)的值域?yàn)?/span>.

綜上所述:當(dāng)時(shí),函數(shù)的值域?yàn)?/span>

當(dāng)時(shí),函數(shù)的值域?yàn)?/span>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過點(diǎn),且圓上到直線距離為的點(diǎn)恰好有個(gè),滿足條件的直線有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)是橢圓上的任意一點(diǎn),直線與橢圓交于兩點(diǎn),直線的斜率都存在.

1)若直線過原點(diǎn),求證:為定值;

2)若直線不過原點(diǎn),且,試探究是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一種室內(nèi)植物的株高(單位:)與與一定范圍內(nèi)的溫度(單位:)有,現(xiàn)收集了該種植物的組觀測(cè)數(shù)據(jù),得到如圖所示的散點(diǎn)圖:

現(xiàn)根據(jù)散點(diǎn)圖利用建立關(guān)于的回歸方程,令,,得到如下數(shù)據(jù):

的相關(guān)系數(shù)分別為,其中

1)用相關(guān)系數(shù)說明哪種模型建立關(guān)于的回歸方程更合適;

2)(i)根據(jù)(1)的結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

ii)已知這種植物的利潤(rùn)(單位:千元)與、的關(guān)系為,當(dāng)何值時(shí),利潤(rùn)的預(yù)報(bào)值最大.

附:對(duì)于樣本,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

相關(guān)系數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有車牌尾號(hào)為的汽車和尾號(hào)為的汽車,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部分.對(duì)一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日, 車日出車頻率 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:

車尾號(hào)

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且 兩車出車相互獨(dú)立.

I)求該單位在星期一恰好出車一臺(tái)的概率.

II)設(shè)表示該單位在星期一與星期二兩天的出車臺(tái)數(shù)之和,求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是橢圓上的動(dòng)點(diǎn),、為橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若M的角平分線上的一點(diǎn),且F1MMP,則|OM|的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高斯函數(shù)是數(shù)學(xué)中的一個(gè)重要函數(shù),在自然科學(xué)社會(huì)科學(xué)以及工程學(xué)等領(lǐng)域都能看到它的身影.設(shè),用符號(hào)表示不大于的最大整數(shù),如,則叫做高斯函數(shù).給定函數(shù),若關(guān)于的方程5個(gè)解,則實(shí)數(shù)的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1 ,正方形的邊長(zhǎng)為分別是的中點(diǎn),是正方形的對(duì)角線的交點(diǎn),是正方形兩對(duì)角線的交點(diǎn),現(xiàn)沿折起到的位置,使得,連結(jié)(如圖2).

(1)求證:;

(2)求三棱錐的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案