19.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.y=log2xB.$y=-\sqrt{x}$C.$y={(\frac{1}{2})^x}$D.$y=\frac{1}{x}$

分析 利用對數(shù)函數(shù)、冪函數(shù)、指數(shù)函數(shù)、反比例函數(shù)的單調(diào)性求解.

解答 解:在A中,y=log2x在區(qū)間(0,+∞)上為增函數(shù),故A正確;
在B中,$y=-\sqrt{x}$在區(qū)間(0,+∞)上為減函數(shù),故B錯誤;
在C中,$y=(\frac{1}{2})^{x}$在區(qū)間(0,+∞)上為減函數(shù),故C錯誤;
在D中,$y=\frac{1}{x}$在區(qū)間(0,+∞)上為減函數(shù),故D錯誤.
故選:A.

點評 本題考查函數(shù)的單調(diào)性的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展開式中,第6項為常數(shù)項.
(1)求展開式中各項系數(shù)的和;
(2)求C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$的值;
(3)求展開式中系數(shù)絕對值最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A={x|1-a≤x≤a+4},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范圍.
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某勞動就業(yè)服務(wù)中心的7名志愿者準(zhǔn)備安排6人在周六、周日兩天在街頭做勞動就業(yè)指導(dǎo),若每天安排3人,則不同的安排方案共有140種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.角α的終邊過點(-2,4),則cosα=( 。
A.$\frac{{2\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,則a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線E:y2=4x焦點為F,準(zhǔn)線為l,P為l上任意點.過P作E的兩條切線,切點分別為Q,R.
(1)若P在x軸上,求|QR|;
(2)求證:以PQ為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若存在兩個正實數(shù)x,y,使得等式3x+a(2y-4ex)(lny-lnx)=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.$({0,\frac{3}{2e}}]$C.$[{\frac{3}{2e},+∞})$D.$({-∞,0})∪[{\frac{3}{2e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x+2}{x}$.
(Ⅰ)寫出函數(shù)f(x)的定義域和值域;
(Ⅱ)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);
(Ⅲ)試判斷函數(shù)g(x)=(x-2)f(x)的奇偶性,并證明.

查看答案和解析>>

同步練習(xí)冊答案