底面是正方形的四棱錐ABCDE中,AE⊥底面BCDE,且AECD,GH分別是BE、ED的中點(diǎn),則GH到平面ABD的距離是______

 

【答案】

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(Ⅰ)求證:BD⊥FG;
(Ⅱ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由;
(Ⅲ)當(dāng)二面角B-PC-D的大小為
3
時(shí),求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(Ⅰ)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由;
(Ⅱ)當(dāng)二面角B-PC-D的大小為
3
時(shí),求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA=AC=2,PB=PD=
6
,點(diǎn)E在PD上,且PE:ED=2:1.
(I)在棱PC上是否存在一點(diǎn)F,使得BF∥平面AEC?證明你的結(jié)論;
(II)求二面角P-AC-E的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

底面是正方形的四棱錐A-BCDE中,AE⊥底面BCDE,且AE=CD=a,G、H分別是BE、ED的中點(diǎn),則GH到平面ABD的距離是
3
6
a
3
6
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一動(dòng)點(diǎn).
(1)求證:BD⊥FG;
(2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由.
(3)如果PA=AB=2,求三棱錐B-CDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案