分析 (1)利用拋物線的標準方程及其性質(zhì)即可得出;
(2)利用雙曲線的標準方程及其性質(zhì)即可得出.
解答 解:(1)拋物線y2=2px(p>0)的焦點坐標為(p,0),
又焦點在直線2x-y-4=0上,
∴2p-0-4=0,
解得p=2,
(2)由題意知雙曲線標準方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a,b>0).
∴$\frac{a}$=$\frac{3}{4}$,$\frac{{a}^{2}}{c}$=$\frac{16}{5}$,
又c2=a2+b2,解得a=4,b=3,
∴所求雙曲線標準方程為$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1
點評 本題考查了拋物線與雙曲線的標準方程及其性質(zhì),屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | x2-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1 | D. | $\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{22}{7}$ | B. | $\frac{25}{8}$ | C. | $\frac{23}{7}$ | D. | $\frac{157}{50}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com