已知f(x)=x2+ax+b(a,b∈R)的定義域為[-1,1],記|f(x)|的最大值為M.

(1)不等式M≥能成立嗎?試說明理由;

(2)當M=時,求f(x)的解析式.

解析:(1)由已知得:|f(0)|≤M,|f(1)|≤M,|f(-1)|≤M,

因|2f(0)-f(1)-f(-1)|=2,|2f(0)-f(1)-f(-1)|≤2|f(0)|+|f(1)|+|f(-1)|.

故2≤2M+M+M,即M≥.

(2)當M=時,|f(0)|≤,即-≤b≤                                       ①

|f(1)|≤,即-≤1+a+b≤.                                                   ②

|f(-1)|≤,即-≤1-a+b≤.                                                   ③

②+③得,-1≤2+2b≤1,所以-≤b≤-.                                    ④

由①④得b=-,代入②得-1≤a≤0.

將b=-代入③得-1≤-a≤0,即0≤a≤1,所以a=0.所以當M=時,f(x)=x2-.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)當a=
1
2
時,解不等式f(x)≤0;
(Ⅱ)若a>0,解關于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,則f{f[f(-2)]}=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2,x>0
f(x+1),x≤0
則f(2)+f(-1)
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)對定義域中任意x,均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關于點(a,b)對稱;
(1)已知f(x)=
x2-mx+1x
的圖象關于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=-2x-n(x-1),求函數(shù)g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的條件下,若對實數(shù)x<0及t>0,恒有g(x)+tf(t)>0,求正實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若對任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),則實數(shù)m的取值范圍是
m
1
4
m
1
4

查看答案和解析>>

同步練習冊答案