一列火車沿平直軌道運行,先以10m/s的速度勻速行駛15min,隨即改以15m/s的速度勻速行駛10min,最后在5min內(nèi)又前進1000m而停止.則該火車在前25min及整個30min內(nèi)的平均速度各為多大?它通過最后2000m的平均速度是多大?
【答案】
分析:分別求出前25分鐘、整個30分鐘內(nèi)的路程以及2000m所用的時間,根據(jù)平均速度的定義式求出平均速度.
解答:解:
∵v=
,
∴火車在開始的15min和接著的10min內(nèi)的路程分別為:
s
1=v
1t
1=10m/s×15×60s=9×10
3m,
s
2=v
2t
2=15m/s×10×60s=9×10
3m,
所以火車在前25min和整個30min內(nèi)的平均速度分別為:
v
1=
=
=12m/s;
v
2=
=
=10.56m/s;
因火車通過最后2000m的前一半路程以v
2=15m/s勻速運動,經(jīng)歷時間為:
=
=
s,
所以最后2000m內(nèi)的平均速度為:
v=
=
=5.45m/s.
答:火車在前25min及整個30min內(nèi)的平均速度各為12m/s和10.56m/s;它通過最后2000m的平均速度是5.45m/s.
點評:本題考查平均速度的定義式,知道求哪一段時間內(nèi)的平均速度,就用哪一段時間內(nèi)的路程除以時間.