相關(guān)習(xí)題
 0  49084  49092  49098  49102  49108  49110  49114  49120  49122  49128  49134  49138  49140  49144  49150  49152  49158  49162  49164  49168  49170  49174  49176  49178  49179  49180  49182  49183  49184  49186  49188  49192  49194  49198  49200  49204  49210  49212  49218  49222  49224  49228  49234  49240  49242  49248  49252  49254  49260  49264  49270  49278  366461 

科目: 來源: 題型:

關(guān)于x的不等式組的解集是,則m =       

查看答案和解析>>

科目: 來源:不詳 題型:填空題

觀察下列等式:
1
3
+
2
=
(
3
-
2
)
(
3
+
2
)(
3
-
2
)
=
3
-
2
,
1
4
+
3
=
(
4
-
3
)
(
4
+
3
)(
4
-
3
)
=
4
-
3
,請(qǐng)你從上述等式中找出規(guī)律,并利用這一規(guī)律計(jì)算(
2
3
+
2
+
2
4
+
3
+
2
5
+
4
+
…+
2
2012
+
2011
)•(
2012
+
2
)=______.

查看答案和解析>>

科目: 來源: 題型:

.在平面直角坐標(biāo)系中,有A(3,-2),B(4,2)兩點(diǎn),現(xiàn)另取一點(diǎn)C(1,n),

當(dāng)n =          時(shí),AC + BC的值最。

查看答案和解析>>

科目: 來源: 題型:

如圖,點(diǎn)M是△ABC內(nèi)一點(diǎn),過點(diǎn)M分別作直線平行于△ABC的各邊,所形成的三個(gè)小三角形△1、△2、△3(圖中陰影部分)的面積分別是4,9和49.則△ABC的面積是         

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知x=
3
+
2
,y=
3
-
2
,求x2-xy+y2的值.

查看答案和解析>>

科目: 來源: 題型:

        

已知:,,求下列各式的值.

; 

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知a=
3
-1
,求a3+3a2+1的值.

查看答案和解析>>

科目: 來源: 題型:

三個(gè)牧童A、B、C在一塊正方形的牧場(chǎng)上看守一群牛,為保證公平合理,他們商量將牧場(chǎng)劃分為三塊分別看守,劃分的原則是:①每個(gè)人看守的牧場(chǎng)面積相等;②在每個(gè)區(qū)域內(nèi),各選定一個(gè)看守點(diǎn),并保證在有情況時(shí)他們所需走的最大距離(看守點(diǎn)到本區(qū)域內(nèi)最遠(yuǎn)處的距離)相等.按照這一原則,他們先設(shè)計(jì)了一種如圖1的劃分方案:把正方形牧場(chǎng)分成三塊相等的矩形,大家分頭守在這三個(gè)矩形的中心(對(duì)角線交點(diǎn)),看守自己的一塊牧場(chǎng).

過了一段時(shí)間,牧童B和牧童C又分別提出了新的劃分方案.

牧童B的劃分方案如圖2:三塊矩形的面積相等,牧童的位置在三個(gè)小矩形的中心.

牧童C的劃分方案如圖3:把正方形的牧場(chǎng)分成三塊矩形,牧童的位置在三個(gè)小矩形的中心,并保證在有情況時(shí)三個(gè)人所需走的最大距離相等.

請(qǐng)回答:

(1)牧童B的劃分方案中,牧童      (填A、BC)在有情況時(shí)所需走的最大距離較遠(yuǎn);

(2)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計(jì)算時(shí)可取正方形邊長(zhǎng)為2)

查看答案和解析>>

科目: 來源: 題型:

已知:,,求下列式的值

查看答案和解析>>

科目: 來源:不詳 題型:解答題

閱讀材料:黑白雙雄、縱橫江湖;雙劍合璧,天下無敵.這是武俠小說中常見的描述,其意是指兩人合在一起,取長(zhǎng)補(bǔ)短,威力無比.在二次根式中也有這種相輔相成的“對(duì)子”如:(2+
3
)(2-
3
)=1
,2+
3
2-
3
的積不含有根號(hào),我們就說這兩個(gè)式子互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式.于是二次根式
2+
3
2-
3
可以這樣
2+
3
2-
3
=
(2+
3
)(2+
3
)
(2-
3
)(2-
3
)
=
7+4
3
1
=7+4
3
,像這樣,通過分子、分母同乘以一個(gè)式子把分母中的根號(hào)化去或把根號(hào)中的分母化去,叫做分母有理化.
解決問題:①4+
7
的有理化因式是______
②計(jì)算:
1
2+
3
+
27
-6
1
3

③計(jì)算:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…
1
1999
+
2000

查看答案和解析>>

同步練習(xí)冊(cè)答案