科目: 來源: 題型:
【題目】學習投影后,小明、小穎利用燈光下自己的影子長度來測量一路燈的高度,并探究影子長度的變化規(guī)律.如圖,在同一時間,身高為1.6 m的小明(AB)的影子BC長是3 m,而小穎(EH)剛好在路燈燈泡的正下方H點,并測得HB=6 m.
(1)請在圖中畫出形成影子的光線,并確定路燈燈泡所在的位置G;
(2)求路燈燈泡的垂直高度GH;
(3)如果小明沿線段BH向小穎(點H)走去,當小明走到BH的中點B1處時,其影子長為B1C1;當小明繼續(xù)走剩下路程的到B2處時,其影子長為B2C2;當小明繼續(xù)走剩下路程的到B3處,…,按此規(guī)律繼續(xù)走下去,當小明走剩下路程的到Bn處時,其影子BnCn的長為 m.(直接用含n的代數(shù)式表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為米,中午時不能擋光. 如圖,某舊樓的一樓窗臺高1米,要在此樓正南方米處再建一幢新樓. 已知該地區(qū)冬天中午時陽光從正南方照射,并且光線與水平線的夾角最小為°,在不違反規(guī)定的情況下,請問新建樓房最高_____________米. (結(jié)果精確到1米.,)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CD⊥AB與點D,E為圓外一點,EO⊥AB,與BC交于點G,與圓O交于點F,連接EC,且EG=EC.
(1)求證:EC是圓O的切線;
(2)當∠ABC=22.5°時,連接CF.
①求證:AC=CF;
②若AD=1,求線段FG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一家水果店以每斤6元的價格購進某種水果若干斤,然后以每斤12元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出10斤.為保證每天至少售出360斤,水果店決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利1200元,那么水果店需將每斤的售價降低多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過點A(3,0)和點B(4,3).
(1)求這條拋物線的函數(shù)表達式;
(2)求該拋物線的頂點坐標;
(3)在給定坐標系內(nèi)畫出這條拋物線.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點坐標為(2,1),且經(jīng)過點(-1,-8).
(1)求此拋物線的函數(shù)表達式;
(2)求拋物線與坐標軸的交點坐標;
(3)若自變量x的取值范圍是,求對應(yīng)的函數(shù)值y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】“我要上春晚”進入決賽階段,最終將有甲、乙、丙、丁4名選手進行決賽的終極較量,決賽分3期進行,每期比賽淘汰1名選手,最終留下的歌手即為冠軍.假設(shè)每位選手被淘汰的可能性都相等.
(1)甲在第1期比賽中被淘汰的概率為 ;
(2)用樹狀圖法或表格法求甲在第2期被淘汰的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com