科目: 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點 A(,4)和點B(8,),與坐標(biāo)軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時,直接寫出的解集;
(3)若點P是軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某電器超市銷售每臺進價分別為2000元、1700元的A、B兩種型號的空調(diào),如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(進價、售價均保持不變,利潤=銷售總收入進貨成本)
(1)求A、B兩種型號的空調(diào)的銷售單價;
(2)若超市準(zhǔn)備用不多于54000元的金額再采購這兩種型號的空調(diào)共30臺,求A種型號的空調(diào)最多能采購多少臺?
查看答案和解析>>
科目: 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,我市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)査的學(xué)生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 °;
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生1600人,請根據(jù)上述調(diào)查結(jié)果,估計該學(xué)校學(xué)生中對校園安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形的頂點的坐標(biāo)為為正方形的中心;以正方形的對角線為邊,在的右側(cè)作正方形為正方形的中心;再以正方形的對角線為邊,在的右側(cè)作正方形為正方形的中心;再以正方形的對角線為邊,在的右側(cè)作正方形為正方形的中心:…;按照此規(guī)律繼續(xù)下去,則點的坐標(biāo)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地. 甲車先出發(fā)勻速駛向B地,40 min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時. 由于滿載貨物,為了行駛安全,速度減少了50 km/h,結(jié)果與甲車同時到達B地. 甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法:①a=4.5;②甲的速度是60 km/h;③乙出發(fā)80 min追上甲;④乙剛到達貨站時,甲距B地180 km.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.OD交BC于點F,當(dāng)S△COF:S△CDF=3:2時,求點D的坐標(biāo).
(3)如圖2,點E的坐標(biāo)為(0,),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BC與x軸平行,AB=1,點C的坐標(biāo)為(6,2),E是AD的中點;反比例函數(shù)y1=(x>0)圖象經(jīng)過點C和點E,過點B的直線y2=ax+b與反比例函數(shù)圖象交于點F,點F的縱坐標(biāo)為4.
(1)求反比例函數(shù)的解析式和點E的坐標(biāo);
(2)求直線BF的解析式;
(3)直接寫出y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O,D分別為AB,BC的中點,連接OD,作⊙O與AC相切于點E,在AC邊上取一點F,使DF=DO,連接DF.
(1)判斷直線DF與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)∠A=30°,CF時,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某報刊銷售處從報社購進甲、乙兩種報紙進行銷售.已知從報社購進甲種報紙200份與乙種報紙300份共需360元,購進甲種報紙300份與乙種報紙200份共需340元
(1)求購進甲、乙兩種報紙的單價;
(2)已知銷售處賣出甲、乙兩種報紙的售價分別為每份1元、1.5元.銷售處每天從報社購進甲、乙兩種報紙共600份,若每天能全部銷售完并且銷售這兩種報紙的總利潤不低于300元,問該銷售處每天最多購進甲種報紙多少份?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com