科目: 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,
(1)證明:CF=EB.
(2)證明:AB=AF+2EB.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1,并直接寫出A1、B1、C1各點的坐標(biāo);
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點D、E.
(1)若AC=12,BC=15,求△ABD的周長;
(2)若∠B=20°,求∠BAD的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖△EDB由△ABC繞點B逆時針旋轉(zhuǎn)而來,D點落在AC上,DE交AB于點F,若AB=AC,DB=BF,則AF與BF的比值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=BC=2,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標(biāo)為( 。
A. (2,1) B. (1,2) C. (1,3) D. (3,1)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D,下列四個結(jié)論:
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④S△ACD:S△ACB=1:3.
其中正確的有( )
A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某小區(qū)開展了“節(jié)約用水為環(huán)保做貢獻(xiàn)”的活動,為了解居民用水情況,在小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表
月用水量(噸) | 8 | 9 | 10 |
戶數(shù) | 2 | 6 | 2 |
則關(guān)于這10戶家庭的月用水量,下列說法錯誤的是 ( )
A. 方差是4 B. 極差2 C. 平均數(shù)是9 D. 眾數(shù)是9
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數(shù)y=ax2+bx的解析式;
(2)若當(dāng)-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com