科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB = AC,點(diǎn)D是邊BC的中點(diǎn),過點(diǎn)A、D分別作BC與AB的平行線,相交于點(diǎn)E,連結(jié)EC、AD.
求證:四邊形ADCE是矩形.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論,①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,∠BFC=105°;④BF=CF.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(2017懷化,第10題,4分)如圖,A,B兩點(diǎn)在反比例函數(shù)的圖象上,C,D兩點(diǎn)在反比例函數(shù)的圖象上,AC⊥y軸于點(diǎn)E,BD⊥y軸于點(diǎn)F,AC=2,BD=1,EF=3,則的值是( )
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】曉東在解一元二次方程時(shí),發(fā)現(xiàn)有這樣一種解法:如:解方程x(x+4)=6.
解:原方程可變形,得[(x+2)﹣2][(x+2)+2]=6.(x+2)2﹣22=6,(x+2)2=6+22,(x+2)2=10.直接開平方并整理,得,.我們稱曉東這種解法為“平均數(shù)法”.
(1)下面是曉東用“平均數(shù)法”解方程(x+2)(x+6)=5時(shí)寫的解題過程.
解:原方程可變形,得
[(x+□)﹣〇][(x+□)+〇]=5.
(x+□)2﹣〇2=5,
(x+□)2=5+〇2.
直接開平方并整理,得x1=☆,x2=¤.
上述過程中的“□”,“〇”,“☆”,“¤”表示的數(shù)分別為 , , , .
(2)請(qǐng)用“平均數(shù)法”解方程:(x﹣3)(x+1)=5.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,過點(diǎn)C作CD⊥AB于D,∠A=30°,BD=1,則AB的值是( ).
A.1B.2C.3D.4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,已知墻長(zhǎng)為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為米某中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,已知墻長(zhǎng)為米.設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為米
用含的代數(shù)式表示平行于墻的一邊的長(zhǎng)為________米,的取值范圍為________;
這個(gè)苗圃園的面積為平方米時(shí),求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組對(duì)關(guān)于的方程提出了下列問題.
若使方程為一元二次方程,是否存在?若存在,求出并解此方程.
若使方程為一元一次方程,是否存在?若存在,請(qǐng)求出.你能解決這個(gè)問題嗎?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)分別是軸上位于原點(diǎn)兩側(cè)的兩點(diǎn),點(diǎn)在第一象限,直線 交軸于點(diǎn),直線交軸于點(diǎn),.
(1)求;
(2)求點(diǎn)的坐標(biāo)及的值;
(3)若,求直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在國(guó)家的宏觀調(diào)控下,某市的商品房成交價(jià)由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)問4、5兩月平均每月降價(jià)的百分率是多少?
(2)如果房?jī)r(jià)繼續(xù)回落,按此降價(jià)的百分率,你預(yù)測(cè)到7月分該市的商品房成交均價(jià)是否會(huì)跌破3000元/m2?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)有兩點(diǎn)P1 x1,y1 ,P1 x2,y2 其兩點(diǎn)間的距離P1P2 = ,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可化簡(jiǎn)為|x2 x1|或|y2 y1|.
(1)已知 A (1,4)、B (-3,5),試求 A.、B兩點(diǎn)間的距離;
(2)已知 A、B在平行于 y軸的直線上,點(diǎn) A的縱坐標(biāo)為-8,點(diǎn) B的縱坐標(biāo)為-1,試求 A、B兩點(diǎn)的距 離;
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說(shuō)明理由:
(4)在(3)的條件下,平面直角坐標(biāo)系中,在 x軸上找一點(diǎn) P,使 PD+PF的長(zhǎng)度最短,求出點(diǎn) P的坐 標(biāo)以及 PD+PF的最短長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com