科目: 來源: 題型:
【題目】小王上周買進某種股票1000股,每股27元。
(1)星期三收盤時,每股是多少元?
(2)本周內(nèi)最高價是每股多少元?最低價是每股多少元?
(3)若小王在本周五的收盤價將股票全部賣出,你認為他會獲利嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①BC與CF的位置關系為: .
②BC,CD,CF之間的數(shù)量關系為: ;(將結(jié)論直接寫在橫線上)
(2)數(shù)學思考
如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進資金,經(jīng)技術(shù)改進后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請你認真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預計生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
科目: 來源: 題型:
【題目】為了了解我市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示.請根據(jù)圖表信息解答下列問題:
(1)在表中:m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)小明的成績是所有被抽查學生成績的中位數(shù),據(jù)此推斷他的成績在 組;
(4)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學生的概率是多少?并列表或畫樹狀圖說明.
查看答案和解析>>
科目: 來源: 題型:
【題目】某司機在東西路上開車接送乘客,他早晨從A地出發(fā),(去向東的方向正方向),到晚上送走最后一位客人為止,他一天行駛的的里程記錄如下(單位:㎞)
+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14
(1) 若該車每百公里耗油 3 L ,則這車今天共耗油 多少升?
(2) 據(jù)記錄的情況,你能否知道該車送完最后一個乘客是,他在A地的什么方向?距A地多遠?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是______,小數(shù)部分是______;
(2)的整數(shù)部分是______,小數(shù)部分是_____;
(3)若設整數(shù)部分是x,小數(shù)部分是y,求x﹣y的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b﹣a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2
證明:連結(jié)______,過點B作________,則____________.
∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=____________.
又∵S五邊形ACBED=______________=ab+c2+a(b﹣a),
∴___________________=ab+c2+a(b﹣a),
∴a2+b2=c2.
查看答案和解析>>
科目: 來源: 題型:
【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是3:2(速度單位:1個單位長度/秒).
(1)求兩個動點運動的速度;
(2)A、B兩點運動到3秒時停止運動,請在數(shù)軸上標出此時A、B兩點的位置;
(3)若A、B兩點分別從(2)中標出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017湖南省益陽市)在平面直角坐標系中,將一點(橫坐標與縱坐標不相等)的橫坐標與縱坐標互換后得到的點叫這一點的“互換點”,如(﹣3,5)與(5,﹣3)是一對“互換點”.
(1)任意一對“互換點”能否都在一個反比例函數(shù)的圖象上?為什么?
(2)M、N是一對“互換點”,若點M的坐標為(m,n),求直線MN的表達式(用含m、n的代數(shù)式表示);
(3)在拋物線的圖象上有一對“互換點”A、B,其中點A在反比例函數(shù)的圖象上,直線AB經(jīng)過點P(,),求此拋物線的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com