科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,FC∥x軸,與對稱軸右側的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使△OCP是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數的圖象是第一、三象限的角平分線.
實驗與探究:由圖觀察易知A(0,2)關于直線的對稱點A′的坐標為(2,0),請在圖中分別標明B(5,3) 、C(-2,5) 關于直線的對稱點B′、C′的位置,并寫出它們的坐標: B′____________、C′___________;
歸納與發(fā)現:結合圖形觀察以上三組點的坐標,你會發(fā)現:坐標平面內任一點P(m,n)關于第一、三象限的角平分線的對稱點的坐標為____________;
運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在直線上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營救受困群眾,途經地時,由所攜帶的救生艇將地受困群眾運回地,沖鋒舟繼續(xù)前進,到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數圖象如圖所示.假設營救群眾的時間忽略不計,水流速度和沖鋒舟在靜水中的速度不變.
(1)請直接寫出沖鋒舟從地到地所用的時間.
(2)求水流的速度.
(3)沖鋒舟將地群眾安全送到地后,又立即去接應救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數關系式為,假設群眾上下船的時間不計,求沖鋒舟在距離地多遠處與救生艇第二次相遇?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線與雙曲線相交于點、,與x軸相交于C點.
求點A、B的坐標及直線的解析式;
求的面積;
觀察第一象限的圖象,直接寫出不等式的解集;
如圖,在x軸上是否存在點P,使得的和最。咳舸嬖,請說明理由并求出P點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校開展課外體育活動,決定開設A:籃球、B:乒乓球、C:武術、D:跑步四種活動項目為了解學生最喜歡哪一種活動項目每人只選取一種隨機抽取了m名學生進行調查,并將調查結果繪成如下統(tǒng)計圖,請你結合圖中信息解答下列問題:
______;
在扇形統(tǒng)計圖中“乒乓球”所對應扇形的圓心角的度數為______;
請把圖的條形統(tǒng)計圖補充完整;
若該校有學生1200人,請你估計該校最喜歡武術的學生人數約是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】一次函數y1=﹣ x﹣1與反比例函數y2= 的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側,當y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地新建的一個企業(yè),每月將生產1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:
污水處理器型號 | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線L:y=-x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數關系式;
(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com