相關(guān)習(xí)題
 0  348390  348398  348404  348408  348414  348416  348420  348426  348428  348434  348440  348444  348446  348450  348456  348458  348464  348468  348470  348474  348476  348480  348482  348484  348485  348486  348488  348489  348490  348492  348494  348498  348500  348504  348506  348510  348516  348518  348524  348528  348530  348534  348540  348546  348548  348554  348558  348560  348566  348570  348576  348584  366461 

科目: 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、BC上的點(diǎn),且DE∥AC,若S△BDE:S△CDE=1:4,則S△BDE:S△ACD=( 。

A.1:16
B.1:18
C.1:20
D.1:24

查看答案和解析>>

科目: 來源: 題型:

【題目】某校七年級(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問題

組別

跳繩次數(shù)

頻數(shù)

A

60≤x<80

2

B

80≤x<100

6

C

100≤x<120

18

D

120≤x<140

12

E

140≤x<160

a

F

160≤x<180

3

G

180≤x<200

1

合計(jì)

50

(1)求a的值;

(2)求跳繩次數(shù)x120≤x<180范圍內(nèi)的學(xué)生的人數(shù);

(3)補(bǔ)全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】8分)如圖,ABC的兩條高AD、BE相交于點(diǎn)H,且AD=BD,試說明下列結(jié)論成立的理由。(1)DBH=DAC;(2)BDH≌△ADC.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(1,0)、B(11,0),點(diǎn)C為線段AB上一動點(diǎn),以AC為直徑的⊙D的半徑DE⊥AC,△CBF是以CB為斜邊的等腰直角三角形,且點(diǎn)E、F都在第四象限,當(dāng)點(diǎn)F到過點(diǎn)A、C、E三點(diǎn)的拋物線的頂點(diǎn)的距離最小時,該拋物線的解析式為

查看答案和解析>>

科目: 來源: 題型:

【題目】完成下面的證明

如圖,端點(diǎn)為P的兩條射線分別交兩直線l1、l2A、C、B、D四點(diǎn),已知∠PBA=PDC,l=PCD,求證:∠2+3=180°.

證明:∵∠PBA=PDC(   

   (同位角相等,兩直線平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代換)

∴PC//BF(內(nèi)錯角相等,兩直線平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代換)

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=  度;

(2)設(shè)∠BAC=α,BCE=β.

①如圖2,當(dāng)點(diǎn)D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點(diǎn)D在直線BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】中國古代對勾股定理有深刻的認(rèn)識.

(1)三國時代吳國數(shù)學(xué)家趙爽第一次對勾股定理加以證明:用四個全等的圖1所示的直角三角形拼成一個圖2所示的大正方形,中間空白部分是一個小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;

(2)清朝的康熙皇帝對勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學(xué)語言描述就是:若直角三角形的三邊長分別為3,4,5的整數(shù)倍,設(shè)其面積為S,則求其邊長的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長.當(dāng)面積S等于150時,請用“積求勾股法”求出這個直角三角形的三邊長.

查看答案和解析>>

科目: 來源: 題型:

【題目】△ABC中,AB=AC,點(diǎn)E,F分別在AB,AC上,AE=AF,BFCE相交于點(diǎn)P.求證:PB=PC,并直接寫出圖中其他相等的線段.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,請思考怎樣把每個三角形紙片只剪一次,將它分成兩個等腰三角形,試一試,在圖中畫出裁剪的痕跡.

(1)      (2)

查看答案和解析>>

科目: 來源: 題型:

【題目】做如下操作:在等腰三角形ABC中,AB= ACAD平分BAC,交BC于點(diǎn)D.ABD作關(guān)于直線AD的軸對稱變換,所得的象與ACD重合.

對于下列結(jié)論:在同一個三角形中,等角對等邊;在同一個三角形中,等邊對等角;

等腰三角形的頂角平分線、底邊上的中線和高互相重合.

上述操作可得出的是 (將正確結(jié)論的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案