相關(guān)習(xí)題
 0  283938  283946  283952  283956  283962  283964  283968  283974  283976  283982  283988  283992  283994  283998  284004  284006  284012  284016  284018  284022  284024  284028  284030  284032  284033  284034  284036  284037  284038  284040  284042  284046  284048  284052  284054  284058  284064  284066  284072  284076  284078  284082  284088  284094  284096  284102  284106  284108  284114  284118  284124  284132  366461 

科目: 來源: 題型:解答題

18.某種商品的標(biāo)價為400元/件,經(jīng)過兩次降價后的價格為324元/件,并且兩次降價的百分率相同.
(1)求該種商品每次降價的百分率;
(2)若該種商品進價為300元/件,兩次降價共售出此種商品100件,為使兩次降價銷售的總利潤不少于3210元.問第一次降價后至少要售出該種商品多少件?

查看答案和解析>>

科目: 來源: 題型:填空題

17.化簡:$\frac{x+3}{{x}^{2}-4x+4}$÷$\frac{{x}^{2}+3x}{(x-2)^{2}}$=$\frac{1}{x}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.對下列生活現(xiàn)象的解釋其數(shù)學(xué)原理運用錯誤的是( 。
A.把一條彎曲的道路改成直道可以縮短路程是運用了“兩點之間線段最短”的原理
B.木匠師傅在刨平的木板上任選兩個點就能畫出一條筆直的墨線是運用了“直線外一點與直線上各點連接的所有線段中,垂線段最短”的原理
C.將自行車的車架設(shè)計為三角形形狀是運用了“三角形的穩(wěn)定性”的原理
D.將車輪設(shè)計為圓形是運用了“圓的旋轉(zhuǎn)對稱性”的原理

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1BC1的位置,AB與A1C1相交于點D,AC與A1C1、BC1分別交于點E、F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在2016CCTV英語風(fēng)采大賽中,婁底市參賽選手表現(xiàn)突出,成績均不低于60分.為了更好地了解婁底賽區(qū)的成績分布情況,隨機抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行了整理,得到如圖的兩幅不完整的統(tǒng)計圖表:
根據(jù)所給信息,解答下列問題:
(1)在頻數(shù)分布表中,m=80,n=0.2.
成績 頻數(shù) 頻率
 60≤x<70 600.30 
 70≤x<80 m 0.40
 80≤x<90 40
 90≤x≤100 200.10
(2)請補全圖中的頻數(shù)分布直方圖.
(3)按規(guī)定,成績在80分以上(包括80分)的選手進入決賽.若婁底市共有4000人參賽,請估計約有多少人進入決賽?

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設(shè)DE交AB于點G,若DF=4,cosB=$\frac{2}{3}$,E是$\widehat{AB}$的中點,求EG•ED的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,將正n邊形繞點A順時針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
【探究證明】
(1)請在圖1和圖2中選擇其中一個證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
【歸納猜想】
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為15°,24°;
(4)圖n中,“疊弦三角形”是等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為60°-$\frac{180°}{n+3}$(用含n的式子表示)

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當(dāng)這根魚竿完全拉伸時,其長度為311cm,求x的值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買60元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克30元;
(2)求y1、y2與x的函數(shù)表達式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于$\frac{1}{2}$MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=15,則△ABD的面積是( 。
A.15B.30C.45D.60

查看答案和解析>>

同步練習(xí)冊答案