相關習題
 0  280871  280879  280885  280889  280895  280897  280901  280907  280909  280915  280921  280925  280927  280931  280937  280939  280945  280949  280951  280955  280957  280961  280963  280965  280966  280967  280969  280970  280971  280973  280975  280979  280981  280985  280987  280991  280997  280999  281005  281009  281011  281015  281021  281027  281029  281035  281039  281041  281047  281051  281057  281065  366461 

科目: 來源: 題型:解答題

10.如圖,在△ABC中,∠ABC=45°,AD⊥BC于點D,點E在AD上,AC=BE.求證:CD+AE=BD.

查看答案和解析>>

科目: 來源: 題型:解答題

9.△ABC中,DE垂直平分BC,∠BAC的平分線交DE于E,EF⊥AB交直線AB于F.
(1)如圖①,求證:AC+AB=2AF;
(2)當∠BAC外角平分線交DE于E時,如圖②、如圖③,AC、AB、AF又有怎樣的數(shù)量關系?請寫出你的猜想,不需要證明;
(3)在(2)的條件下,若AB+AC=10,AF=2,則AB=3或7.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知△ABC,分別以AB、AC為邊作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,連接DC與BE,G、F分別是DC與BE的中點
(1)如圖1,DG=BF(用>、<或=填空)
(2)如圖2,連接AG,判斷△AFG的形狀,并說明理由;
(3)如圖3,若∠DAB=100°,則∠AFG=40°;
(4)在圖3中,若∠DAB=α,∠AFG=β,直接寫出α與β的關系.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,△ABC中,BD為AC邊上的中線,BE平分∠CBD交AC于E,F(xiàn)為BC上一點,連接AF分別交BD、BE于H、G,且BH=BF,過C作CK∥AF交BD的延長線于K
(1)求證:CF=HK;
(2)若AB=BC=5,且AC=6,求DE的長.

查看答案和解析>>

科目: 來源: 題型:解答題

6.四邊形ABCD是一片沙漠地,點A,B在x軸上,E(2,6),F(xiàn)(3,4),折線OFE是流過這片沙漠的水渠,水渠東邊的沙漠由甲承包綠化,水渠西邊的沙漠由乙承包綠化,現(xiàn)甲、乙兩人協(xié)商,在綠化規(guī)規(guī)劃中須將流經(jīng)沙漠中的水渠取直,并且要保持甲乙兩人所承包的沙漠地的面積不變.若準備在AB上找一點P,使得水渠取直為EP,則點P的坐標為多少?

查看答案和解析>>

科目: 來源: 題型:填空題

5.如圖,AB是⊙O的直徑,C是AB弧上一點,AP平分∠BAC,AB=3,AC=1,則PB=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

4.國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某地有四個村莊A、B、C、D,且正好位于一個正方形的四個頂點.現(xiàn)計劃在四個村莊聯(lián)合架設一條線路,他們設計了四種架設方案,如圖實線部分,請你幫助計算一下,哪種架設方案最省電線.

查看答案和解析>>

科目: 來源: 題型:解答題

3.由示意圖可見,拋物線y=x2+px+q若有兩點A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個交點C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當A(1,-2005),且xl、x2均為整數(shù)時,求二次函數(shù)的表達式.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某男子籃球國家隊為備戰(zhàn)“第十八屆男藍世錦賽”,選拔一名“得分后衛(wèi)”,隊里這個位置上的人選有甲、乙二人,兩個隊員在教練規(guī)定的5個定點進行投籃比賽(這5個定點到籃筐距離均相等),每個定點投籃10次,現(xiàn)對每個定點的進球個數(shù)進行統(tǒng)計,小剛依據(jù)統(tǒng)計數(shù)據(jù)繪制了如圖所示尚不完整的統(tǒng)計圖表.
球員甲、乙進球成績統(tǒng)計表
 定點A定點B定點C定點D定點E
球員甲成績867410
球員乙成績7876a
小剛的計算結(jié)果
 平均數(shù)方差
球員甲74
(1)觀察球員乙投籃進球數(shù)的扇形統(tǒng)計圖(圖1),回答:
①乙球員5個定點投籃進球數(shù)的眾數(shù)是7,中位數(shù)是7;
②進球數(shù)為7的扇形所對的圓心角是216°
(2)a=7,$\overline{x{\;}_{乙}}$=7.
(3)請完成圖2中表示乙成績變化情況的折線圖;
(4)①觀察圖2,可以看出乙的成績比較穩(wěn)定(填“甲”或“乙”),計算乙成績的方差,并驗證你的判斷.
②請你從平均數(shù)的方差的角度分析,誰將被選中.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.如圖所示,已知點E是矩形ABCD邊上一動點,沿A→D→C→B的路徑移動,設點E經(jīng)過的路徑長為x,△ABE的面積是y,則下列能大致反映y與x的函數(shù)關系的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案