相關習題
 0  280676  280684  280690  280694  280700  280702  280706  280712  280714  280720  280726  280730  280732  280736  280742  280744  280750  280754  280756  280760  280762  280766  280768  280770  280771  280772  280774  280775  280776  280778  280780  280784  280786  280790  280792  280796  280802  280804  280810  280814  280816  280820  280826  280832  280834  280840  280844  280846  280852  280856  280862  280870  366461 

科目: 來源: 題型:解答題

16.用正方形紙折疊:將正方形紙片的一角折疊,使點A落在點A′處,折痕為EF,再把BE折過去與EA′重合,EH為折痕.

(1)AE=A′E,BE=B′E,∠FEH=90°;
(2)將正方形的形狀大小完全一樣的四個角按上面的方式折疊就得到了圖2如圖所示的正方形EFGH,且不重合的部分也是一個正方形;
①若點A′、B′、C′、D′恰好是B′E、C′H、D′G、A′F的中點,若正方形A′B′C′D′的面積是4,則大正方形ABCD的面積是36;
②如圖3,A′E=B′H=C′G=D′F=3,正方形ABCD的周長比正方形A′B′C′D′的周長的2倍小36,你能求出正方形A′B′C′D′的邊長嗎?

查看答案和解析>>

科目: 來源: 題型:解答題

15.Rt△DEF與等腰△ABC如圖放置(點A與F重合,點D,A,B在同一直線上),AD=3,AB=BC=4,∠EDF=30°,∠ABC=120°.
(1)求證:ED∥AC;
(2)Rt△DEF沿射線AB方向平移,平移距離為a,當點D與點B重合時停止移動:
①當E在BC上時,求a;
②設△DEF與△ABC重疊部分的面積為S,請直接寫出S與平移距離a之間的函數(shù)關系式,并寫出相應的自變量a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.某汽車制造廠開發(fā)了一款新式電動汽車,計劃一年生產安裝240輛.由于抽調不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人:他們經過培訓后上崗,也能獨立進行電動汽車的安裝,生產開始后,調研部分發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)每名熟練工招聘n(0<n<10)名新工人,使得招聘的新工人和抽調的熟練工剛好能完成一年的安裝任務,那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元的工資,那么工廠應招聘多少名新工人,使新工人的數(shù)量多余熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?

查看答案和解析>>

科目: 來源: 題型:解答題

13.(1)$\frac{\sqrt{18}×\sqrt{2}}{\sqrt{3}}$
(2)${({\sqrt{2}+\sqrt{5}})^2}$
(3)$3\sqrt{8}-4\sqrt{32}$
(4)$({\sqrt{18}-\sqrt{\frac{1}{2}}})×\sqrt{8}$
(5)2-$\frac{{\sqrt{27}-\sqrt{12}}}{{\sqrt{3}}}$
(6)$\sqrt{32}-3\sqrt{\frac{1}{2}}+\sqrt{2}$
(7)$\sqrt{40}×\sqrt{10}-21$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.計算下列各題:
(1)2sin45°-$\frac{1}{{\sqrt{2}+1}}$+sin230°+cos260°;
(2)$\sqrt{12}$-3tan30°+(π-4)0+${({-\frac{1}{2}})^{-1}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知如圖:拋物線$y=-\frac{1}{2}{x^2}+2x+\frac{5}{2}$與x軸交于A,B兩點(點A在點B的左側)與y軸交于點C,點D為拋物線的頂點,過點D的對稱軸交x軸于點E.
(1)如圖1,連接BD,試求出直線BD的解析式;
(2)如圖2,點P為拋物線第一象限上一動點,連接BP,CP,AC,當四邊形PBAC的面積最大時,線段CP交BD于點F,求此時DF:BF的值;
(3)如圖3,已知點K(0,-2),連接BK,將△BOK沿著y軸上下平移(包括△BOK)在平移的過程中直線BK交x軸于點M,交y軸于點N,則在拋物線的對稱軸上是否存在點G,使得△GMN是以MN為直角邊的等腰直角三角形?若存在,請直接寫出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖1,在等腰Rt△ACB中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;點D、E分別在邊BC、AC上,連接AD、BE,點N是線段BE的中點,連接CN與AD交于點G.

(1)若CN=6.5,CE=5,求BD的值.
(2)求證:CN⊥AD.
(3)把等腰Rt△DCE繞點C轉至如圖2位置,點N是線段BE的中點,延長NC交AD于點H,請問(2)中的結論還成立嗎?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.如圖,在梯形ABCD中,AD∥BC,∠B=45°,點E是AB的中點,DE=DC,∠EDC=90°,若AB=2,則AD的長是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在△ABC中,∠ACB=90°,AC=BC=4,M為AB的中點.D是射線BC上一個動點,連接AD,將線段AD繞點A逆時針旋轉90°得到線段AE,連接ED,N為ED的中點,連接AN,MN.

(1)如圖1,當BD=2時,AN=$\sqrt{10}$,NM與AB的位置關系是垂直;
(2)當4<BD<8時,
①依題意補全圖2;
②判斷(1)中NM與AB的位置關系是否發(fā)生變化,并證明你的結論;
(3)連接ME,在點D運動的過程中,當BD的長為何值時,ME的長最。孔钚≈凳嵌嗌?請直接寫出結果.

查看答案和解析>>

科目: 來源: 題型:填空題

7.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=CB,tan∠C=$\frac{4}{3}$(如圖),點E在CD邊上運動,聯(lián)結BE.如果EC=EB,那么$\frac{DE}{CD}$的值是$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案