科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
如圖,有一塊三角形材料(△ABC),請你畫出一個圓,使其與△ABC的各邊都相切.
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分6分)
配餐公司為某學校提供A、B、C三類午餐供師生選擇,三類午餐每份的價格分別是:A餐5元,B餐6元,C餐8元.為做好下階段的營銷工作,配餐公司根據(jù)該校上周A、B、C三類午餐購買情況,將所得的數(shù)據(jù)處理后,制成統(tǒng)計表(如下左圖);根據(jù)以往銷售量與平均每份利潤之間的關(guān)系,制成統(tǒng)計圖(如下右圖).
請根據(jù)以上信息,解答下列問題:
(1)該校師生上周購買午餐費用的眾數(shù)是 元;
(2)配餐公司上周在該校銷售B餐每份的利潤大約是 元;
(3)請你計算配餐公司上周在該校銷售午餐約盈利多少元?
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分6分)“五·一”期間,某書城為了吸引讀者,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成12份),并規(guī)定:讀者每購買100元的書,就可獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么讀者就可以分別獲得45元、30元、25元的購書券,憑購書券可以在書城繼續(xù)購書.
如果讀者不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得10元的購書券.
(1)寫出轉(zhuǎn)動一次轉(zhuǎn)盤獲得45元購書券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購書券,你認為哪種方式對讀者更合算?請說明理由.
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分6分)
小明家所在居民樓的對面有一座大廈AB,AB=米.為測量這座居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.求小明家所在居民樓與大廈的距離CD的長度.(結(jié)果保留整數(shù))
(參考數(shù)據(jù):)
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分8分)某學校組織八年級學生參加社會實踐活動,若單獨租用35座客車若干輛,則剛好坐滿;若單獨租用55座客車,則可以少租一輛,且余45個空座位.
(1)求該校八年級學生參加社會實踐活動的人數(shù);
(2)已知35座客車的租金為每輛320元,55座客車的租金為每輛400元.根據(jù)租車資金不超過1500元的預(yù)算,學校決定同時租用這兩種客車共4輛(可以坐不滿).請你計算本次社會實踐活動所需車輛的租金.
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分8分)
已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE = AF.
(1)求證:BE = DF;
(2)連接AC交EF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分10分)某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):.
(1)設(shè)李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?
(成本=進價×銷售量)
查看答案和解析>>
科目: 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東濟南) 題型:解答題
(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com