科目: 來源:2012年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題
如圖,四邊形ABCD的對角線AC、BD交于點O,BE⊥AC于E,DF⊥AC于
F,點O既是AC的中點,又是EF的中點.
(1)求證:△BOE≌△DOF;
(2)若OA=BD,則四邊形ABCD是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題
在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行
銷售,并將所得利潤捐給慈善機構.根據(jù)市場調查,這種許愿瓶一段時間內的銷售量y(個)于銷售單價x(元
/個)之間的對應關系如圖所示.
(1)試判斷y與x之間的函數(shù)關系,并求出函數(shù)關系式;
(2)若許愿瓶的進價為6元/個,按照上述市場調查銷售規(guī)律,求利潤w(元)與銷售單價x(元/個)之間的
函數(shù)關系式;
(3)若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出
最大利潤.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題
問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂
點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:以△ABC的3個頂點和它內部的1個點P,共4個點為頂點,可把△ABC分割成多少個互
不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的3個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個
互不重疊的小三角形?
在探究一的基礎上,我們可看作在圖①△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種
情況:
一種情況,點Q在圖①分割成的某個小三角形內部.不妨設點Q在△PAC的內部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨設點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點和它內部的3個點P、Q、R,共6個點為頂點,可把△ABC分割成 個
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個點為頂點,可把△ABC分割成 個
互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個點為頂點,可把四邊形分割成
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成
個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內部的2012個點,共2020個頂點,可把八邊形分割成多少個互
不重疊的小三角形?(要求列式計算)
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題
如圖,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分別是AC、AB
的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿
BA方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t
<4)s.解答下列問題:
(1)當t為何值時,PQ⊥AB?
(2)當點Q在B、E之間運動時,設五邊形PQBCD的面積為ycm2,求y與t之間的函數(shù)關系式;
(3)在(2)的情況下,是否存在某一時刻t,使得PQ分四邊形BCDE所成的兩部分的面積之比為
=1∶29?若存在,求出此時t的值以及點E到PQ的距離h;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學(解析版) 題型:選擇題
在平面直角坐標系中,點關于x軸對稱的點在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學考試(廣東佛山卷)數(shù)學(解析版) 題型:選擇題
一個幾何體的展開圖如圖所示,這個幾何體是( )
A.三棱柱 B.三棱錐 C.四棱柱 D.四棱錐
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com