相關(guān)習(xí)題
 0  146663  146671  146677  146681  146687  146689  146693  146699  146701  146707  146713  146717  146719  146723  146729  146731  146737  146741  146743  146747  146749  146753  146755  146757  146758  146759  146761  146762  146763  146765  146767  146771  146773  146777  146779  146783  146789  146791  146797  146801  146803  146807  146813  146819  146821  146827  146831  146833  146839  146843  146849  146857  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長;
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長的最大值.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,平行四邊形ABCD中,AB=4,點(diǎn)D的坐標(biāo)是(0,8),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c經(jīng)過x軸上的點(diǎn)A,B.
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)若拋物線向上平移后恰好經(jīng)過點(diǎn)D,求平移后拋物線的解析式.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知平面直角坐標(biāo)系xoy中,有一矩形紙片OABC,O為坐標(biāo)原點(diǎn),AB∥x軸,B(3,),現(xiàn)將紙片按如圖折疊,AD,DE為折痕,∠OAD=30度.折疊后,點(diǎn)O落在點(diǎn)O1,點(diǎn)C落在線段AB點(diǎn)C1處,并且DO1與DC1在同一直線上.
(1)求折痕AD所在直線的解析式;
(2)求經(jīng)過三點(diǎn)O,C1,C的拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運(yùn)動(dòng),⊙P與兩坐標(biāo)軸都相切時(shí),求⊙P半徑R的值.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-,),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過D且垂直于AB的直線為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過A、D、C三點(diǎn)的拋物線的解析式及其對稱軸L;
(3)若P是拋物線的對稱軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說明理由)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對稱軸的拋物線經(jīng)過直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過原點(diǎn)的拋物線對稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過原點(diǎn)的拋物線對稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線M:y=-x2+2mx+n(m,n為常數(shù),且m>0,n>0)的頂點(diǎn)為A,與y軸交于點(diǎn)C;拋物線N與拋物線M關(guān)于y軸對稱,其頂點(diǎn)為B,連接AC,BC,AB.
問拋物線M上是否存在點(diǎn)P,使得四邊形ABCP為菱形?如果存在,請求出m的值;如果不存在,請說明理由.
說明:
(1)如果你反復(fù)探索,沒有解決問題,請寫出探索過程(要求至少寫3步);
(2)在你完成(1)之后,可以從①、②中選取一個(gè)條件,完成解答(選、俚7分;選取②得10分).
①n=1;②n=2.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(35):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,P1、P2、P3、…、Pn分別是拋物線y=x2與直線y=x、y=2x、y=3x、…、y=kx的交點(diǎn),連接P1P2、P2P3,…,Pk-1Pk
(1)求△OP1P2的面積,并直接寫出△OP2P3的面積;
(2)如圖2,猜想△OPk-1Pk的面積,并說明理由;
(3)若將拋物線y=x2改為拋物線y=ax2,其它條件不變,猜想△OPk-1Pk的面積(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案