相關(guān)習(xí)題
 0  142366  142374  142380  142384  142390  142392  142396  142402  142404  142410  142416  142420  142422  142426  142432  142434  142440  142444  142446  142450  142452  142456  142458  142460  142461  142462  142464  142465  142466  142468  142470  142474  142476  142480  142482  142486  142492  142494  142500  142504  142506  142510  142516  142522  142524  142530  142534  142536  142542  142546  142552  142560  366461 

科目: 來(lái)源:第29章《相似形》中考題集(19):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出三次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(19):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

我們已經(jīng)知道:如果兩個(gè)幾何圖形形狀相同而大小不一定相同,我們就把它們叫做相似圖形.比如兩個(gè)正方形,它們的邊長(zhǎng),對(duì)角線等所有元素都對(duì)應(yīng)成比例,就可以稱它們?yōu)橄嗨茍D形.
現(xiàn)給出下列4對(duì)幾何圖形:①兩個(gè)圓;②兩個(gè)菱形;③兩個(gè)長(zhǎng)方形;④兩個(gè)正六邊形.請(qǐng)指出其中哪幾對(duì)是相似圖形,哪幾對(duì)不是相似圖形,并簡(jiǎn)單地說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(19):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,已知△ABC∽△A1B1C1,相似比為k(k>1),且△ABC的三邊長(zhǎng)分別為a、b、c(a>b>c),△A1B1C1的三邊長(zhǎng)分別為a1、b1、c1
(1)若c=a1,求證:a=kc;
(2)若c=a1,試給出符合條件的一對(duì)△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整數(shù),并加以說(shuō)明;
(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(19):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖①,分別以直角三角形ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
(1)如圖②,分別以直角三角形ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1,S2,S3表示,那么S1,S2,S3之間有什么關(guān)系;(不必證明)
(2)如圖③,分別以直角三角形ABC三邊為邊向外作三個(gè)正三角形,其面積分別用S1、S2、S3表示,請(qǐng)你確定S1,S2,S3之間的關(guān)系并加以證明;
(3)若分別以直角三角形ABC三邊為邊向外作三個(gè)一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件證明你的結(jié)論;
(4)類比(1),(2),(3)的結(jié)論,請(qǐng)你總結(jié)出一個(gè)更具一般意義的結(jié)論.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G、H.
(1)求證:△BAE∽△BCF;
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE與AB相交于F.
(1)求證:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t=0.5時(shí),求線段QM的長(zhǎng);
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.1010pic.com/pic6/res/czsx/web/STSource/20131103103039457507426/SYS201311031030394575074002_ST/0.png">是否為定值?若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

問(wèn)題背景
(1)如圖,△ABC中,DE∥BC分別交AB,AC于D,E兩點(diǎn),過(guò)點(diǎn)E作EF∥AB交BC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:
四邊形DBFE的面積S=______,△EFC的面積S1=______,△ADE的面積S2=______.
探究發(fā)現(xiàn)
(2)在(1)中,若BF=a,F(xiàn)C=b,DE與BC間的距離為h.請(qǐng)證明S2=4S1S2
拓展遷移
(3)如圖,?DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?)中的結(jié)論求△ABC的面積.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

設(shè)△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當(dāng)△A1B1C1∽△A2B2C2,且時(shí),則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認(rèn)為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說(shuō)明理由;若不正確,請(qǐng)舉出一個(gè)反例說(shuō)明.

查看答案和解析>>

科目: 來(lái)源:第29章《相似形》中考題集(20):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ADC=90°,AD∥BC,點(diǎn)E在BC上,點(diǎn)F在AC上,∠DFC=∠AEB.
(1)求證:△ADF∽△CAE;
(2)當(dāng)AD=8,DC=6,點(diǎn)E、F分別是BC、AC的中點(diǎn)時(shí),求直角梯形ABCD的面積?

查看答案和解析>>

同步練習(xí)冊(cè)答案