相關習題
 0  140139  140147  140153  140157  140163  140165  140169  140175  140177  140183  140189  140193  140195  140199  140205  140207  140213  140217  140219  140223  140225  140229  140231  140233  140234  140235  140237  140238  140239  140241  140243  140247  140249  140253  140255  140259  140265  140267  140273  140277  140279  140283  140289  140295  140297  140303  140307  140309  140315  140319  140325  140333  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(36):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知:如圖所示,關于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
(1)求出此拋物線的解析式,并寫出頂點坐標;
(2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標,并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q.是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(36):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數(shù)解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在△ABC中,∠A=90°,BC=10,△ABC的面積為25,點D為AB邊上的任意一點(D不與A、B重合),過點D作DE∥BC,交AC于點E.設DE=x,以DE為折線將△ADE翻折(使△ADE落在四邊形DBCE所在的平面內),所得的△A'DE與梯形DBCE重疊部分的面積記為y.
(1)用x表示△ADE的面積;
(2)求出0<x≤5時y與x的函數(shù)關系式;
(3)求出5<x<10時y與x的函數(shù)關系式;
(4)當x取何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知:t1,t2是方程t2+2t-24=0的兩個實數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經過點A(t1,0),B(0,t2).
(1)求這個拋物線的解析式;
(2)設點P(x,y)是拋物線上一動點,且位于第三象限,四邊形OPAQ是以OA為對角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當平行四邊形OPAQ的面積為24時,是否存在這樣的點P,使?OPAQ為正方形?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖1,拋物線y=x2-2x+k與x軸交于A、B兩點,與y軸交于點C(0,-3).[圖2、圖3為解答備用圖]

(1)k=______,點A的坐標為______,點B的坐標為______;
(2)設拋物線y=x2-2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2-2x+k上求點Q,使△BCQ是以BC為直角邊的直角三角形.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標;否則,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線F:y=ax2+bx+c的頂點為P,拋物線F與y軸交于點A,與直線OP交于點B.過點P作PD⊥x軸于點D,平移拋物線F使其經過點A、D得到拋物線F′:y=a′x2+b′x+c′,拋物線F′與x軸的另一個交點為C.
(1)當a=1,b=-2,c=3時,求點C的坐標(直接寫出答案);
(2)若a、b、c滿足了b2=2ac
①求b:b′的值;
②探究四邊形OABC的形狀,并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側),過點A的直線交拋物線于另一點C,點C的坐標為(-2,6).
(1)求a的值及直線AC的函數(shù)關系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應用(解析版) 題型:解答題

在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(-1,0),如圖所示:拋物線y=ax2+ax-2經過點B.
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案