相關習題
 0  140130  140138  140144  140148  140154  140156  140160  140166  140168  140174  140180  140184  140186  140190  140196  140198  140204  140208  140210  140214  140216  140220  140222  140224  140225  140226  140228  140229  140230  140232  140234  140238  140240  140244  140246  140250  140256  140258  140264  140268  140270  140274  140280  140286  140288  140294  140298  140300  140306  140310  140316  140324  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數(shù)關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

直線y=-x+6分別與x軸、y軸交于點A、B,經(jīng)過A、B兩點的拋物線與x軸的另一交點為C,且其對稱軸為x=3.
(1)求這條拋物線對應的函數(shù)關系式;
(2)設D(x,y)是拋物線在第一象限內(nèi)的一個點,點D到直線AB的距離為d、試寫出d關于x的函數(shù)關系式,這個函數(shù)是否有最大值或最小值?如果有,并求這個值和此時點D的坐標;如果沒有,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=:3?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題中的結果均保留根號)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知:如圖,Rt△AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負半軸上,C為OA上一點且OC=OB,拋物線y=(x-2)(x-m)-(p-2)(p-m)(m、p為常數(shù)且m+2≥2p>0)經(jīng)過A、C兩點.
(1)用m、p分別表示OA、OC的長;
(2)當m、p滿足什么關系時,△AOB的面積最大.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經(jīng)過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關系式及自變量t的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的頂點A在x軸上,與y軸的交點為B(0,1),且b=-4ac.
(1)求拋物線的解析式;
(2)在拋物線上是否存在一點C,使以BC為直徑的圓經(jīng)過拋物線的頂點A?若不存在,說明理由;若存在,求出點C的坐標,并求出此時圓的圓心點P的坐標;
(3)根據(jù)(2)小題的結論,你發(fā)現(xiàn)B、P、C三點的橫坐標之間、縱坐標之間分別有何關系?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.
(1)若△AMP的面積為y,寫出y與t的函數(shù)關系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的頂點A(0,3),C(-1,0),將矩形OABC繞原點O順時針方向旋轉(zhuǎn)90度,得矩形OA′B′C′矩形設直線BB’與x軸交于點M,與y軸交于點N,拋物線經(jīng)過點C,M,N點.
解答下列問題:
(1)設直線BB′表示的函數(shù)解析式為y=mx+n,求m,n;
(2)求拋物線表示的二次函數(shù)的解析式;
(3)在拋物線上求出使S△PB‘C‘=S矩形OABC的所有點P的坐標.

查看答案和解析>>

同步練習冊答案