相關習題
 0  140117  140125  140131  140135  140141  140143  140147  140153  140155  140161  140167  140171  140173  140177  140183  140185  140191  140195  140197  140201  140203  140207  140209  140211  140212  140213  140215  140216  140217  140219  140221  140225  140227  140231  140233  140237  140243  140245  140251  140255  140257  140261  140267  140273  140275  140281  140285  140287  140293  140297  140303  140311  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

在直角梯形ABCD中,∠C=90°,高CD=6cm(如圖1).動點P,Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止.兩點運動時的速度都是1cm/s.而當點P到達點A時,點Q正好到達點C.設P,Q同時從點B出發(fā),經過的時間為t(s)時,△BPQ的面積為y(cm2)(如圖2).分別以x,y為橫、縱坐標建立直角坐標系,已知點P在AD邊上從A到D運動時,y與t的函數(shù)圖象是圖3中的線段MN.
(1)分別求出梯形中BA,AD的長度;
(2)寫出圖3中M,N兩點的坐標;
(3)分別寫出點P在BA邊上和DC邊上運動時,y與t的函數(shù)關系式(注明自變量的取值范圍),并在答題卷的圖4(放大了的圖3)中補全整個運動中y關于t的函數(shù)關系的大致圖象.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,直線y=-x+4與x軸交于點A,與y軸交于點C,已知二次函數(shù)的圖象經過點A、C和點B(-1,0).
(1)求該二次函數(shù)的關系式;
(2)設該二次函數(shù)的圖象的頂點為M,求四邊形AOCM的面積;
(3)有兩動點D、E同時從點O出發(fā),其中點D以每秒個單位長度的速度沿折線OAC按O?A?C的路線運動,點E以每秒4個單位長度的速度沿折線OCA按O?C?A的路線運動,當D、E兩點相遇時,它們都停止運動.設D、E同時從點O出發(fā)t秒時,△ODE的面積為S.
①請問D、E兩點在運動過程中,是否存在DE∥OC,若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
③設S是②中函數(shù)S的最大值,那么S=______.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx-7的圖象交x軸于A,B兩點,交y軸于點D,點C為拋物線的頂點,且A,C兩點的橫坐標分別為1和4.
(1)求A,B兩點的坐標;
(2)求二次函數(shù)的函數(shù)表達式;
(3)在(2)的拋物線上,是否存在點P,使得∠BAP=45°?若存在,求出點P的坐標及此時△ABP的面積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知拋物線y=-x2+2x+3交軸于A,B兩點(點A在點B的左側),與y軸交于點C
(1)求點A、B、C的坐標;
(2)若點M為拋物線的頂點,連接BC、CM、BM,求△BCM的面積;
(3)連接AC,在軸上是否存在點P,使△ACP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在直角坐標系中,O為原點,拋物線y=x2+bx+3與x軸的負半軸交于點A,與y軸的正半軸交于點B,tan∠ABO=,頂點為P.
(1)求拋物線的解析式;
(2)若拋物線向上或向下平移|k|個單位長度后經過點C(-5,6),試求k的值及平移后拋物線的最小值;
(3)設平移后的拋物線與y軸相交于D,頂點為Q,點M是平移的拋物線上的一個動點.請?zhí)骄浚寒旤cM在何位置時,△MBD的面積是△MPQ面積的2倍求出此時點M的坐標.友情提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是,頂點坐標是

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線y=-x2+2nx+n2-9(n為常數(shù))經過坐標原點和x軸上另一點C,頂點在第一象限.
(1)確定拋物線所對應的函數(shù)關系式,并寫出頂點坐標;
(2)在四邊形OABC內有一矩形MNPQ,點M,N分別在OA,BC上,A點坐標為(2,8)B點坐標為(4,8),點Q,P在x軸上.當MN為多少時,矩形MNPQ的面積最大,最大面積是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A,O,B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸l的對稱點為B1,求△AB1B的面積.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知與x軸交于點A(1,0)和B(5,0)的拋物線的頂點為C(3,4),拋物線l2與l1關于x軸對稱,頂點為C′.
(1)求拋物線l2的函數(shù)關系式;
(2)已知原點O,定點D(0,4),l2上的點P與l1上的點P′始終關于x軸對稱,則當點P運動到何處時,以點D,O,P,P′為頂點的四邊形是平行四邊形;
(3)在l2上是否存在點M,使△ABM是以AB為斜邊且一個角為30°的直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(-2,2)、B兩點,從點A和點B分別引平行于y軸的直線與x軸分別交于C,D兩點,點P(t,0),為線段CD上的動點,過點P且平行于y軸的直線與拋物線和直線分別交于R,S.
(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點B的坐標;
(2)當SR=2RP時,計算線段SR的長;
(3)若線段BD上有一動點Q且其縱坐標為t+3,問是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(44):2.8 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=ax2+x+2.
(1)當a=-1時,求此拋物線的頂點坐標和對稱軸;
(2)若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
(3)當a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0).若點M在點N的左邊,試比較a1與a2的大。

查看答案和解析>>

同步練習冊答案