科目: 來源: 題型:
如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連結(jié)BF。
(1)求證:BD=CD; (2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目: 來源: 題型:
在一次期中考試中,A、B、C、D、E五位同學(xué)的數(shù)學(xué)、英語成績的有關(guān)信息如下表所示:
| A | B | C | D | E | 平均分 | 標(biāo)準(zhǔn)差 |
數(shù)學(xué) | 71 | 72 | 69 | 68 | 70 |
|
|
英語 | 88 | 82 | 94 | 85 | 76 | 85 |
|
(1)求這五位同學(xué)在本次考試中數(shù)學(xué)成績的平均分和英語成績的標(biāo)準(zhǔn)差。
(2)為了比較不同學(xué)科考試成績的好與差,采用標(biāo)準(zhǔn)分是一個合理的選擇,標(biāo)準(zhǔn)分的計算公式是:標(biāo)準(zhǔn)分=(個人成績-平均成績)÷成績標(biāo)準(zhǔn)差。從標(biāo)準(zhǔn)分看,標(biāo)準(zhǔn)分大的考試成績更好,請問A同學(xué)在這次考試中,數(shù)學(xué)與英語哪個學(xué)科考得更好?
查看答案和解析>>
科目: 來源: 題型:
隨著人民生活水平的不斷提高,家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計,奧林花園A區(qū)2008年底擁有家庭轎車144輛,2010年底家庭轎車的擁有量達(dá)到225輛.
(1)若該小區(qū)2008年底到2010年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2011年底家庭轎車將達(dá)到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資25萬元再建造若干個停車位.據(jù)測算,建造費(fèi)用分別為室內(nèi)車位6000元/個,露天車位2000元/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的3倍,但不超過室內(nèi)車位的4.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.
查看答案和解析>>
科目: 來源: 題型:
如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜邊上的中點(diǎn).
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s 的速度沿射線AB方向平移,在△EFG 平移的同時,點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s 的速度在直角邊GF上向點(diǎn)F運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)F時,點(diǎn)P停止運(yùn)動,△EFG也隨之停止平移.設(shè)運(yùn)動時間為x(s),F(xiàn)G的延長線交 AC于H,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)P與G、F重合的情況).
(1)當(dāng)x為何值時,OP∥AC ?
(2)求y與x 之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13∶24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)
查看答案和解析>>
科目: 來源: 題型:
某市在一次扶貧助殘活動中,共捐款2580000元.將2580000元用科學(xué)記數(shù)法表示為( )
A.2.58×107元 B.0.258×107元 C.2.58×106元 D.25.8×106元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com