某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y件與銷售單價(jià)x元符合一次函數(shù)y=kx+b,且x=65時(shí),y="55" 當(dāng)x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W元與銷售單價(jià)x之間的關(guān)系式;銷售單間定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價(jià)x的范圍.

(1)y=-x+120;(2)W=-(x-90)²+900,87,891;(3)70≤x≤87.

解析試題分析:(1)把x=65,y=55、 x=75,y=45代入一次函數(shù)y=kx+b,利用待定系數(shù)法即可求出一次函數(shù)的表達(dá)式;(2)根據(jù)題意,總利潤=每一件服裝的利潤×銷售量,每件服裝的利潤=每件服裝的售價(jià)-每件服裝的成本=x-60,據(jù)此代入計(jì)算,然后根據(jù)二次函數(shù)的性質(zhì)計(jì)算最大值即可;(3)根據(jù)題意把W=500代入(2)中的函數(shù)關(guān)系式,然后利用二次函數(shù)的圖象及其性質(zhì)即可解答.
試題解析:
(1)當(dāng)x=65時(shí),y=55時(shí)代入y=kx+b中,得:55=65k+b,
當(dāng)x=75時(shí),y=45時(shí)代入y=kx+b中,得:55=65k+b,
解之得:k=-1,b=120,
∴y=-x+120.
(2)W=(x-60)(-x+120)=-(x-90)²+900,
∴W=-(x-90)²+900,
∵a=-1<0,
∴當(dāng)x=90時(shí),W最大值為900.
又∵獲利不得高于45%,
∴x≤60+60×45%,即x≤87.
∴把x=87代入W=-(x-90)²+900中,
∴W=-(87-90)²+900=891,
∴當(dāng)銷售定價(jià)定為87元時(shí),商場獲得的利潤最大,最大利潤為891元.
(3)把W=500代入W=-(x-90)²+900中,
-(x-90)²+900=500,
解之得:x1=70,x2=110.
∴當(dāng)70≤x≤110時(shí),W≥500,
又∵x≤87,
∴當(dāng)70≤x≤87時(shí),商場獲得的利潤不少于500元.
考點(diǎn):1待定系數(shù)法求一次函數(shù)的表達(dá)式,2二次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點(diǎn)F.

(1)若拋物線過點(diǎn)A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點(diǎn)M是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),點(diǎn)M在何處時(shí)△AMC的面積最大?最大面積是多少?求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知:為邊長是的等邊三角形,四邊形為邊長是6的正方形. 現(xiàn)將等邊和正方形按如圖①的方式擺放,使點(diǎn)與點(diǎn)重合,點(diǎn)、在同一條直線上,從圖①的位置出發(fā),以每秒1個(gè)單位長度的速度沿方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)暫停運(yùn)動(dòng),設(shè)的運(yùn)動(dòng)時(shí)間為秒().

(1)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊和正方形重疊部分的面積為,請直接寫出之間的函數(shù)關(guān)系式;
(2)如圖②,當(dāng)點(diǎn)與點(diǎn)重合時(shí),作的角平分線于點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,得到. 在線段上是否存在點(diǎn),使得為等腰三角形. 如果存在,求線段的長度;若不存在,請說明理由.
(3)如圖③,若四邊形為邊長是的正方形,的移動(dòng)速度為每秒 個(gè)單位長度,其余條件保持不變. 開始移動(dòng)的同時(shí),點(diǎn)從點(diǎn)開始,沿折線以每秒個(gè)單位長度開始移動(dòng),停止運(yùn)動(dòng)時(shí),點(diǎn)也停止運(yùn)動(dòng). 設(shè)在運(yùn)動(dòng)過程中,交折線點(diǎn),則當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

銳角△ABC中,BC=6,,兩動(dòng)點(diǎn)M,N分別在邊AB,AC上滑動(dòng),且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0).

(1)求△ABC中邊BC上高AD;
(2)當(dāng)x為何值時(shí),PQ恰好落在邊BC上(如圖1);
(3)當(dāng)PQ在△ABC外部時(shí)(如圖2),求y關(guān)于x的函數(shù)關(guān)系式(注明x的取值范圍),并求出x為何值時(shí)y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)P的坐標(biāo)為           時(shí),四邊形PQAC是平行四邊形;當(dāng)點(diǎn)P的坐標(biāo)為                 時(shí),四邊形PQAC是等腰梯形. (利用備用圖畫圖,直接寫出結(jié)果,不寫求解過程).
(3)若P為線段BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

(1)若拋物線過點(diǎn)M(-2,-2),求實(shí)數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點(diǎn)P,使CP+EP的值最小,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,).

(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點(diǎn)D,試在對稱軸上找出點(diǎn)P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).
(3)如圖2,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),分別連接AC、BC,過點(diǎn)E作EF∥AC交線段BC于點(diǎn)F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時(shí)E點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

中秋節(jié)期間某水庫養(yǎng)殖場為適應(yīng)市場需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對水庫中某種鮮魚進(jìn)行捕撈、銷售.
九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天()的捕撈與銷售的相關(guān)信息如下:

鮮魚銷售單價(jià)(元/kg)
20
單位捕撈成本(元/kg)

捕撈量(kg)
950-10x
(1)在此期間該養(yǎng)殖場每天的捕撈量與前一天的捕撈量相比是如何變化的?
(2)假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(元)之間的函數(shù)關(guān)系式;(當(dāng)天收入=日銷售額日捕撈成本)
(3)試說明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案