精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2+bx+c過點A(0,2)、B(,),且點B關于原點的對稱點C也在該拋物線上.
⑴求a、b、c的值;
⑵①這條拋物線上縱坐標為的點共有         個;
②請寫出: 函數值y隨著x的增大而增大的x的一個范圍          
(1)解:∵點B(,)關于原點的對稱點C坐標為(-,-
又拋物線過A(0,2)、B、C三點

解得
(2)①2,
②x≤,-1<x<0等只要是x≤的子集即可)
(1)將A、B、C三點坐標代入拋物線的解析式中列出方程組,即可求出a、b、c的值;
(2)①根據拋物線的對稱性直接解答;
②求出拋物線的對稱軸,根據二次函數的性質解答;
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線F:的頂點為P,拋物線:與y軸交于點A,與直線OP交于點B.過點P作PD⊥x軸于點D,平移拋物線F使其經過點A、D得到拋物線F′:,拋物線F′與x軸的另一個交點為C.

⑴當a = 1,b=-2,c = 3時,求點C的坐標(直接寫出答案);
⑵若a、b、c滿足了
①求b:b′的值;
②探究四邊形OABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知平面直角坐標系中,點為兩動點,其中,連結,
(1)求證:;
(2)當時,拋物線經過兩點且以軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線軸于點,過點作直線交拋物線于兩點,問是否存在直線,使?若存在,求出直線對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知圓P的圓心在反比例函數圖象上,并與x軸相交于A、B兩點. 且始終與y軸相切于定點C(0,1).

(1)求經過A、BC三點的二次函數圖象的解析式;
(2)若二次函數圖象的頂點為D,問當k為何值時,四邊形ADBP為菱形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0  ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0其中正確的個數為【   】
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數。
(1)求證:對于任意實數m,該二次函數圖象與x軸總有公共點;
(2)若該二次函數圖象與x軸有兩個公共點A,B,且A點坐標為(1,0),求B點坐標。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知,如圖,直線經過兩點,它與拋物線在第一象限內相交于點P,又知的面積為4,求的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線與x軸正半軸交于點A(3,0).以OA為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF.

(1)求a的值.
(2)求點F的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

方程x2+2x-1=0的根可看出是函數y=x+2與y=
1
x
的圖象交點的橫坐標,用此方法可推斷方程x3+x-1=0的實根x所在范圍為( 。
A.-
1
2
<x<0
B.0<x<
1
2
C.
1
2
<x<1
D.1<x<
3
2

查看答案和解析>>

同步練習冊答案