【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為 ;
(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為 .
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(,0).
【解析】
試題分析:(1)利用關(guān)于原點中心對稱的點的坐標特征求解;
(2)利用點的平移規(guī)律求解;
(3)點C走過的路徑為以點O為圓心,OC為半徑,圓心角為90度的弧,然后根據(jù)弧長公式計算點C走過的路徑長;
(4)先確定點B關(guān)于x軸的對稱點B′坐標為(﹣1,﹣1),連結(jié)AB′交x軸于P點,根據(jù)兩點之間線段最短可確定PA+PB的值最小,接著利用待定系數(shù)法求出直線AB′的解析式,然后求直線AB′與x軸的交點坐標就看得到點P的坐標.
試題解析:(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標為(2,﹣3);
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為(3,1);
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長==π;
(4)B點關(guān)于x軸的對稱點B′坐標為(﹣1,﹣1),連結(jié)AB′交x軸于P點,則PA+PB=PA+PB′=AB′,此時PA+PB的值最小,設(shè)直線AB′的解析式為y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:,得:,所以直線AB′的解析式為y=﹣4x﹣5,當y=0時,﹣4x﹣5=0,解得x=,所以此時點P的坐標為(,0).
故答案為:(2,﹣3);(3,1);π;(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形花壇ABCD周長是80m,∠ABC=60°,沿著菱形的對角線修建了兩條小路AC和BD,相交于O點.
(1)求兩條小路的長AC、BD.(結(jié)果可用根號表示)
(2)求花壇的面積.(結(jié)果可用根號表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達式;
(3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一種產(chǎn)品2013年的產(chǎn)量是100萬件,計劃2015年產(chǎn)量達到121萬件,假設(shè)2013年到2015年這種產(chǎn)品產(chǎn)量的年增長率相同,求2013年到2015年這種產(chǎn)品產(chǎn)量的年增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的三邊分別為a、b、c,且(a-b)2+(a2+b2-c2)2=0,則三角形的形狀為————————————————。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:如圖1,點P(x,y)在平面直角坐標中,過點P作PA⊥x軸,垂足為A,將點P繞垂足A順時針旋轉(zhuǎn)角α(0°<α<90°)得到對應(yīng)點P′,我們稱點P到點P′的運動為傾斜α運動.例如:點P(0,2)傾斜30°運動后的對應(yīng)點為P′(1,).
圖形E在平面直角坐標系中,圖形E上的所有點都作傾斜α運動后得到圖形E′,這樣的運動稱為圖形E的傾斜α運動.
理解
(1)點Q(1,2)傾斜60°運動后的對應(yīng)點Q′的坐標為 ;
(2)如圖2,平行于x軸的線段MN傾斜α運動后得到對應(yīng)線段M′N′,M′N′與MN平行且相等嗎?說明理由.
應(yīng)用:(1)如圖3,正方形AOBC傾斜α運動后,其各邊中點E,F(xiàn),G,H的對應(yīng)點E′,F(xiàn)′,G′,H′構(gòu)成的四邊形是什么特殊四邊形: ;
(2)如圖4,已知點A(0,4),B(2,0),C(3,2),將△ABC傾斜α運動后能不能得到Rt△A′B′C′,且∠A′C′B′為直角,其中點A′,B′,C′為點A,B,C的對應(yīng)點.請求出cosα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點A(a﹣2,3)和點B(﹣1,b+5)關(guān)于y軸對稱,則點C(a,b)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(m>0)交y軸于點C,CA⊥y軸,交拋物線于點A,點B在拋物線上,且在第一象限內(nèi),BE⊥y軸,交y軸于點E,交AO的延長線于點D,BE=2AC.
(1)用含m的代數(shù)式表示BE的長.
(2)當m=時,判斷點D是否落在拋物線上,并說明理由.
(3)若AG∥y軸,交OB于點F,交BD于點G.
①若△DOE與△BGF的面積相等,求m的值.
②連結(jié)AE,交OB于點M,若△AMF與△BGF的面積相等,則m的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com