精英家教網(wǎng)如圖,已知AB、AC分別為⊙O的直徑和弦,D為弧BC的中點(diǎn),DE⊥AC于E,DE=6,AC=16.
(1)求證:DE是⊙O的切線;
(2)求直徑AB的長(zhǎng).
分析:(1)連接OD,BC,要證明DE是⊙O的切線只要證明OD⊥DE即可,根據(jù)已知條件可以證明OD⊥BC;
(2)由(1)可得四邊形CFDE為矩形,從而得到CF=DE=6,BC=2CF=12,利用勾股定理即可求得AB的長(zhǎng).
解答:精英家教網(wǎng)(1)證明:如圖,連接OD,BC;
∵AB為⊙O的直徑,
∴BC⊥AC,
∵DE⊥AC,
∴BC∥DE;
∵D為弧BC的中點(diǎn),
∴OD⊥BC,
∴OD⊥DE.
∴DE是⊙O的切線.

(2)解:設(shè)BC與DO交于點(diǎn)F,
由(1)可得四邊形CFDE為矩形;
∴CF=DE=6,
∵OD⊥BC,
∴BC=2CF=12,
在Rt△ABC中,
AB=
BC2+AC2
=
122+162
=20
點(diǎn)評(píng):本題主要考查的是切線的判定,要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證它們垂直即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,已知AB、AC分別為⊙O的直徑和弦,D為弧BC的中點(diǎn),DE⊥AC于E.
(1)求證:DE是⊙O的切線.
(2)若OB=5,BC=6,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB、AC是⊙O的兩條弦,且AB=AC,若∠BOC=100°,則∠BAO=
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)如圖,已知AB、AC是⊙O的兩條切線,切點(diǎn)分是點(diǎn)B、點(diǎn)C,∠BAC=60°,又⊙O的半徑為2cm,則點(diǎn)A與點(diǎn)O的距離為
4
4
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB:AC=AD:AE,∠BAD=∠CAE.求證:∠ABC=∠ADE.

查看答案和解析>>

同步練習(xí)冊(cè)答案