【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進(jìn)入到各個家庭.某大型超市為緩解停車難問題,建筑設(shè)計師提供了樓頂停車場的設(shè)計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
【答案】坡道口的限高DF的長是3.8m.
【解析】試題分析:首先根據(jù)AC∥ME,可得∠CAB=∠AE28°,再根據(jù)三角函數(shù)計算出BC的長,進(jìn)而得到BD的長,進(jìn)而求出DF即可.
試題解析:∵AC∥ME,
∴∠CAB=∠AEM,
在Rt△ABC中,∠CAB=28°,AC=9m,
∴BC=ACtan28°≈9×0.53=4.77(m),
∴BD=BC﹣CD=4.77﹣0.5=4.27(m),
在Rt△BDF中,∠BDF+∠FBD=90°,
在Rt△ABC中,∠CAB+∠FBC=90°,
∴∠BDF=∠CAB=28°,
∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),
答:坡道口的限高DF的長是3.8m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設(shè)運動時間為t(s)(0<t<4).
(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設(shè)△EPC的面積為ycm2,求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC(AC<AB<BC),請用直尺(不帶刻度)和圓規(guī),按下列要求作圖(不要求寫作法,但要保留作圖痕跡):
(1)在邊BC上確定一點P,使得PA+PC=BC;
(2)作出一個△DEF,使得:①△DEF是直角三角形;②△DEF的周長等于邊BC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:解分式不等式<0
解:根據(jù)實數(shù)的除法法則:同號兩數(shù)相除得正數(shù),異號兩數(shù)相除得負(fù)數(shù),因此,原不等式可轉(zhuǎn)化為:
①或②
解①得:無解,解②得:﹣2<x<1
所以原不等式的解集是﹣2<x<1
請仿照上述方法解下列分式不等式:(1)>0;(2)<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( )個.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘貨輪位于O地,發(fā)現(xiàn)燈塔A在它的正北方向上,這艘貨輪沿正東方向航行50千米,到達(dá)B地,此時用雷達(dá)測得燈塔A與貨輪的距離為100千米.
(1)在圖中作出燈塔A的位置,并作射線BA;
(2)以正北,正南方向為基準(zhǔn),借助量角器,描述燈塔A在B地的什么方向上(精確到1°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形的邊長是1米;
(1)若設(shè)圖中最大正方形的邊長是米,請用含的代數(shù)式分別表示出正方形的邊長
(2)觀察圖形的特點可知,長方形相對的兩邊是相等的(即, )請根據(jù)以上結(jié)論,求出的值
(3)現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙工程隊單獨鋪設(shè)分別需要10天、15天完成,如果兩隊從同一位置開始,沿相反的方向同時施工2天后,因甲隊另有任務(wù),余下的工程由乙隊單獨施工,還要多少天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進(jìn)價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準(zhǔn)備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com