【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.

(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學,F(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?

【答案】
(1)解:設操場四角的每個小正方形邊長是x米,根據(jù)題意,

得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],

整理,得:x2﹣45x+200=0,

解得:x1=5,x2=40(舍去),

故操場四角的每個小正方形邊長是5米


(2)解:設鋪矩形廣場地面的總費用為y元,廣場四角的小正方形的邊長為x米,

則,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]

即:y=80x2﹣3600x+240000

配方得,y=80(x﹣22.5)2+199500

當x=22.5時,y的值最小,最小值為19.95萬元>15萬元,

故這些資金不能購買所需的全部地面磚,教育局還應該至少給學校解決19.95﹣15=4.95萬元資金.


【解析】(1)設小正方形的邊長為x米,表示出里邊大矩形的長為(100﹣2x)米,寬為(80﹣2x)米,利用灰色部分的面積=4個小正方形的面積+里邊大矩形的面積,紅色部分面積=上下兩個矩形面積+左右兩個矩形面積,根據(jù)灰色地面磚的面積是鋪紅色地面磚面積的4倍列出關于x的方程,求出方程的解得到x的值,即為小正方形的邊長;(2)設鋪矩形廣場地面的總費用為y元,廣場四角的小正方形的邊長為x米,根據(jù)等量關系“總費用=鋪白色地面磚的費用+鋪綠色地面磚的費用”列出y關于x的函數(shù),求得最小值,與15萬元比較可得是否夠用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強擲兩枚質地均勻的骰子,每個骰子的六個面上分別刻有1到6的點數(shù),則兩枚骰子點數(shù)相同的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l:y= x軸于點A,交y軸于點B,點A1、A2、A3,…x軸上,點B1、B2、B3,…在直線l上.若OB1A,A1B2A2,A2B3A3,…均為等邊三角形,則A5B6A6的面積是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,△AOB為頂點A,B的坐標分別為A(0,4),B(﹣3,0),按要求解答下列問題.

(1)①在圖中,先將△AOB向上平移6個單位,再向右平移3個單位,畫出平移后的△A1O1B1;(其中點A,O,B的對應點為A1 , O1 , B1
②在圖中,將△A1O1B1繞點O1順時針旋轉90°,畫出旋轉后的Rt△A2O1B2;(其中點A1 , B1的對應點為A2 , B2
(2)直接寫出點A2 , B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)將△ABC沿y軸翻折,畫出翻折后的△A1B1C1 , 點A的對應點A1的坐標是
(2)△ABC關于x軸對稱的圖形△A2B2C2 , 直接寫出點A2的坐標
(3)若△DBC與△ABC全等(點D與點A重合除外),請直接寫出滿足條件點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

(1)△AEF≌△CEB;
(2)AF=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個直角三角形紙片ABO,放置在平面直角坐標系中,點A( ,0),點B(0,1),點0(0,0).過邊OA上的動點M(點M不與點O,A重合)作MN丄AB于點N,沿著MN折疊該紙片,得頂點A的對應點A′,設OM=m,折疊后的△AM′N與四邊形OMNB重疊部分的面積為S.

(1)如圖①,當點A′與頂點B重合時,求點M的坐標;
(2)如圖②,當點A′,落在第二象限時,A′M與OB相交于點C,試用含m的式子表示S;
(3)當S= 時,求點M的坐標(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設甲與A地相距y(km),乙與A地相距y(km),甲離開A地時間為x(h),y、yx之間的函數(shù)圖象如圖所示.

(1)甲的速度是   km/h.

(2)請分別求出y、yx之間的函數(shù)關系式.

(3)當乙與A地相距240km時,甲與B地相距多少千米?

查看答案和解析>>

同步練習冊答案