如圖,PB切⊙O于B點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn),過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO交⊙O于點(diǎn)C,連結(jié)BC,AF.

(1)求證:直線PA為⊙O的切線;

(2)若BC=6,=1∶2,求⊙O的半徑的長(zhǎng).

 

【答案】

(1)連接OB,根據(jù)切線的性質(zhì)可得∠PBO=90°,再有OA=OB,BA⊥PO于D,公共邊PO可證得△PAO≌△PBO,即得∠PAO=∠PBO=90°,從而可以證得結(jié)論;(2)5

【解析】

試題分析:(1)連接OB,根據(jù)切線的性質(zhì)可得∠PBO=90°,再有OA=OB,BA⊥PO于D,公共邊PO可證得△PAO≌△PBO,即得∠PAO=∠PBO=90°,從而可以證得結(jié)論;

(2)設(shè)AD=x,根據(jù)=1∶2,即可表示出FD=2x,OA=OF=2x-3,在Rt△AOD中,根據(jù)勾股定理即可列方程求解.

(1)如圖,連接OB

∵PB是⊙O的切線

∴∠PBO=90°

∵OA=OB,BA⊥PO于D

∴AD=BD,∠POA=∠POB

又∵PO=PO

∴△PAO≌△PBO

∴∠PAO=∠PBO=90°

∴直線PA為⊙O的切線;

(2)∵OA=OC,AD=BD,BC=6

∴OD=BC=3

設(shè)AD=x

=1∶2

∴FD=2x,OA=OF=2x-3

在Rt△AOD中,由勾股定理得(2x-3)2=x2+32

解得x1=4,x2=0(不合題意,舍去)

∴AD=4,OA=2x-3=5

即⊙O的半徑的長(zhǎng)5.

考點(diǎn):切線的性質(zhì),全等三角形的判定和性質(zhì),勾股定理

點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握切線垂直于經(jīng)過切點(diǎn)的半徑,注意勾股定理在圓中的靈活應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•孝感模擬)如圖,PB切⊙O于B點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn),過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO交⊙O于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)若BC=6,AD:FD=1:2,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆北京市東城區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,PB切⊙O于B點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn),過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO交⊙O于點(diǎn)C,連結(jié)BC,AF.

(1)求證:直線PA為⊙O的切線;
(2)若BC=6,=1∶2,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,PB切⊙O于B點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn),過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO交⊙O于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)若BC=6,AD:FD=1:2,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,PB切⊙OB點(diǎn),直線PO交⊙O于點(diǎn)E,F,過點(diǎn)BPO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO交⊙O于點(diǎn)C,連結(jié)BC,AF

(1)求證:直線PA為⊙O的切線;

(2)若BC=6,=1∶2,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案