【題目】定義:如果將△ABC與△DEF各分割成兩個三角形,且△ABC所分的兩個三角形與△DEF所分的兩個三角形分別對應相似,那么稱△ABC與△DEF互為“近似三角形”,將每條分割線稱為“近似分割線”.
(1)如圖1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,請判斷這兩個三角形是否互為“近似三角形”?如果是,請直接在圖1中畫出一組分割線,并注明分割后所得兩個小三角形銳角的度數(shù);若不是,請說明理由.
(2)判斷下列命題是真命題還是假命題,若是真命題,請在括號內打“√”;若是假命題,請在括號內打“×”.
①任意兩個直角三角形都是互為“近似三角形” ;
②兩個“近似三角形”只有唯一的“近似分割線” ;
③如果兩個三角形中有一個角相等,那么這兩個三角形一定是互為“近似三角形” .
(3)如圖2,已知△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判斷這兩個三角形是否互為“近似三角形”?如果是,請在圖2中畫出不同位置的“近似分割線”,并直接分別寫出“近似分割線”的和;如果不是,請說明理由.
【答案】(1)這兩個三角形是互為“近似三角形”,圖形見解析;(2)√,×,×;(3)這兩個三角形是互為“近似三角形”, “近似分割線”的和為6+4或.
【解析】
(1)根據(jù)互為“近似三角形”即可得出結論;
(2)根據(jù)互為“近似三角形”的意義,判斷出是假命題,畫圖說明即可得出結論;
(3)如圖5,先判斷出△BCM≌△FEN(ASA),得出CM=FN,再構造出直角三角形,即可得出結論;
②如圖6,同(1)的方法即可得出結論.
解:(1)這兩個三角形是互為“近似三角形”,如圖1所示,
(2)①任意兩個直角三角形都是互為“近似三角形”,是真命題,如圖2所示,
②兩個“近似三角形”只有唯一的“近似分割線”,假命題,如圖3所示,
在△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°;
③如果兩個三角形中有一個角相等,那么這兩個三角形一定是互為“近似三角形”,是假命題,
如圖4所示,一個頂角為20°的等腰三角形和底角為20°的等腰三角形;
,
故答案為:√,×,×;
(3)這兩個三角形是互為“近似三角形”,
①如圖5,
在△BCM和△FEN中,,
∴△BCM≌△FEN(ASA),
∴CM=EN,FN=BM,
過點M作MH⊥BC于H,
在Rt△MHC中,設CH=x,則MH=x,CM=2x,
在Rt△BHM中,BH=MH=x,
∵BC=x+x=,
∴x=,
∴CM=2,FN=BM=,
∴“近似分割線”的和為CM+FN=;
②同①的方法得,△CBM≌FEN(ASA),
∴BM=EN,
過點C作CH⊥BM于H,
在Rt△BHC中,BH=CH==1+,
在Rt△CHM中,CM=2CH=2+2,MH=CH=3+,
∴NE=BM=4+2,
∴“近似分割線”的和為CM+EN=6+4,
即“近似分割線”的和為6+4或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)已知矩形在平面直角坐標系中,,,點的坐標為,動點以每秒2個單位長度的速度沿運動(點不與點、點重合),設運動時間為秒.
(1)求經(jīng)過、、三點的拋物線解析式;
(2)點在(1)中的拋物線上,當為中點時,若,求點的坐標;
(3)當點在上運動時,如圖(2)過點作,軸,垂足分別為、,設矩形與重疊部分面積為,求與的函數(shù)關系式,并求出的最大值;
(4)如圖(3)點在(1)中的拋物線上,是延長線上的一點,且、兩點均在第三象限內,、是位于直線同側的不同兩點,若點到軸的距離為,的面積為,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】歐拉(Euler,1707年~1783年)為世界著名的數(shù)學家、自然科學家,他在數(shù)學、物理、建筑、航海等領域都做出了杰出的貢獻.他對多面體做過研究,發(fā)現(xiàn)多面體的頂點數(shù)(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flat surface)之間存在一定的數(shù)量關系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點數(shù)V | 4 | 6 | 8 | |
棱數(shù)E | 6 | 12 | ||
面數(shù)F | 4 | 5 | 8 |
(2)分析表中的數(shù)據(jù),你能發(fā)現(xiàn)V、E、F之間有什么關系嗎?請寫出關系式:____________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年植樹節(jié)期間,某景觀園林公司購進一批成捆的,兩種樹苗,每捆種樹苗比每捆種樹苗多10棵,每捆種樹苗和每捆種樹苗的價格分別是630元和600元,而每棵種樹苗和每棵種樹苗的價格分別是這一批樹苗平均每棵價格的0.9倍和1.2倍.
(1)求這一批樹苗平均每棵的價格是多少元?
(2)如果購進的這批樹苗共5500棵,種樹苗至多購進3500棵,為了使購進的這批樹苗的費用最低,應購進種樹苗和種樹苗各多少棵?并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為4×4的正方形網(wǎng)格圖,△ABC的頂點都在網(wǎng)格格點上(每個小正方形的頂點稱為格點,頂點都在格點上的三角形稱為格點三角形).
(1)在圖1,圖2,圖3中分別畫一個與△ABC有一公共邊且與△ABC成軸對稱的三角形.
(2)在圖4中畫出一個滿足要求的格點△DEF,要求:△DEF與△ABC相似,且相似比的值為無理數(shù).(畫出一種即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校開展“雙劇進課堂”的活動,該校童威隨機抽取部分學生,按四個類別:表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”,調查他們對漢劇的喜愛情況,將結果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息,解決下列問題:
(1)這次共抽取_________名學生進行統(tǒng)計調查,扇形統(tǒng)計圖中,類所對應的扇形圓心角的大小為__________
(2)將條形統(tǒng)計圖補充完整
(3)該校共有1500名學生,估計該校表示“喜歡”的類的學生大約有多少人?
各類學生人數(shù)條形統(tǒng)計圖各類學生人數(shù)扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2,當a≤x≤b時m≤y≤n,則下列說法正確的是( 。
A.當n﹣m=1時,b﹣a有最小值
B.當n﹣m=1時,b﹣a有最大值
C.當b﹣a=1時,n﹣m無最小值
D.當b﹣a=1時,n﹣m有最大值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,拋物線交軸于,兩點,交軸于點,直線經(jīng)過,兩點.
(1)求拋物線的解析式;
(2)過點作直線軸交拋物線于另一點,點是直線下方拋物線上的一個動點,且在拋物線對稱軸的右側,過點作軸于點,交于點,交于點,連接,過點作于點,設點的橫坐標為,線段的長為,求與之間的函數(shù)解析式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,連接,過點作于點(點在線段上),交于點,連接交于點,當時,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com