如圖,在矩形ABCD中,E是BC邊上的點(diǎn),AE=BC,DF⊥AE,垂足為F,連接DE.
(1)求證:△ABE≌△DFA;
(2)如果AD=10,AB=6,求cos∠EDF的值.

【答案】分析:(1)根據(jù)直角三角形的性質(zhì)可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠DAF,然后利用“角角邊”證明△ABE和△DFA全等;
(2)根據(jù)全等三角形對應(yīng)邊相等可得DF=AB,利用勾股定理列式求出AF的長度,從而得到EF的長度,再利用勾股定理列式求出DE的長度,然后根據(jù)余弦=列式計(jì)算即可得解.
解答:(1)證明:在矩形ABCD中,AD=BC,AD∥BC,
∴∠AEB=∠DAF,
∵AE=BC,
∴AE=AD,
∵DF⊥AE,
∴∠AFD=90°,
∴∠AFD=∠B=90°,
在△ABE和△DFA中,
,
∴△ABE≌△DFA(AAS);

(2)解:根據(jù)(1)△ABE≌△DFA,
∴DF=AB=6,
在Rt△ADF中,AF===8,
∴EF=AE-AF=10-8=2,
在Rt△DEF中,DE===2
∴cos∠EDF===
點(diǎn)評:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,銳角三角函數(shù),準(zhǔn)確識(shí)圖找準(zhǔn)對應(yīng)邊與對應(yīng)角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案