【題目】如圖,在四邊形中,,、相交于點(diǎn),點(diǎn)、分別是、的中點(diǎn),若,那么等于( )
A.B.C.D.
【答案】B
【解析】
連接AH,CH,根據(jù)在四邊形ABCD中,∠BCD=∠BAD=90°,H是BD的中點(diǎn)可知AH=CH=BD,再由點(diǎn)G是AC的中點(diǎn)可知HG是線段AC的垂直平分線,故∠EGH=90°,再由對頂角相等可知∠GEH=∠BEC=80°,由直角三角形的性質(zhì)即可得出結(jié)論.
解:連接AH,CH,
∵在四邊形ABCD中,∠BCD=∠BAD=90°,H是BD的中點(diǎn),
∴AH=CH=BD.
∵點(diǎn)G時(shí)AC的中點(diǎn),
∴HG是線段AC的垂直平分線,
∴∠EGH=90°.
∵∠BEC=80°,
∴∠GEH=∠BEC=80°,
∴∠GHE=90°-80°=10°.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且OC=3OA.
(1)求拋物線的函數(shù)表達(dá)式;
(2)直接寫出直線BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請說明理由.
(4)如圖2,點(diǎn)P(1,k)在直線BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請直接寫出M點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的頂點(diǎn)坐標(biāo)為A(—5,1),B(—1,1), C(—1,6),D(—5,4),請作出四邊形ABCD關(guān)于x軸及y軸的對稱圖形,并寫出坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次知識(shí)競賽中,甲、乙兩人進(jìn)入了“必答題”環(huán)節(jié).規(guī)則是:兩人輪流答題,每人都要回答20個(gè)題,每個(gè)題回答正確得a分,回答錯(cuò)誤或放棄回答扣b分.當(dāng)甲、乙兩人恰好都答完12個(gè)題時(shí),甲答對了8個(gè)題,得分為64分;乙答對了9個(gè)題,得分為78分.
(1)求a和b的值;
(2)規(guī)定此環(huán)節(jié)得分不低于120分能晉級,甲在剩下的比賽中至少還要答對多少個(gè)題才能順利晉級?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當(dāng)點(diǎn)E在BD上時(shí).求證:FD=CD;
(2)當(dāng)α為何值時(shí),GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長均為1,線段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖①,點(diǎn)在小正方形格點(diǎn)上,在圖①中作出點(diǎn)關(guān)于直線的對稱點(diǎn),連接、、、,并直接寫出四邊形的周長;
(2)在圖②中畫出一個(gè)以線段為一條對角線、面積為15的菱形,且點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, A(-1,0),B(3,0),C(0,2),CD∥x軸,CD=AB.
(1)求點(diǎn)D的坐標(biāo)
(2)四邊形OCDB的面積
(3)在y軸上是否存在一點(diǎn)P,使=,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AD與BC的位置關(guān)系如何?為什么?
(2)證明BC平分∠DBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請估計(jì)喜歡體育類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com