【題目】已知:AOB和兩點(diǎn)C、D,求作一點(diǎn)P,使PC=PD,且點(diǎn)P到AOB的兩邊的距離相等.

(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).

【答案】作圖見解析.

【解析】

試題分析:由所求的點(diǎn)P滿足PC=PD,利用線段垂直平分線定理得到P點(diǎn)在線段CD的垂直平分線上,再由點(diǎn)P到AOB的兩邊的距離相等,利用角平分線定理得到P在AOB的角平分線上,故作出線段CD的垂直平分線,作出AOB的角平分線,兩線交點(diǎn)即為所求的P點(diǎn).

試題解析:如圖所示:

作法:(1)以O(shè)為圓心,任意長(zhǎng)為半徑畫弧,與OA、OB分別交于兩點(diǎn);

(2)分別以這兩交點(diǎn)為圓心,大于兩交點(diǎn)距離的一半長(zhǎng)為半徑,在角內(nèi)部畫弧,兩弧交于一點(diǎn);

(3)以O(shè)為端點(diǎn),過角內(nèi)部的交點(diǎn)畫一條射線;

(4)連接CD,分別為C、D為圓心,大于CD長(zhǎng)為半徑畫弧,分別交于兩點(diǎn);

(5)過兩交點(diǎn)畫一條直線;

(6)此直線與前面畫的射線交于點(diǎn)P,

點(diǎn)P為所求的點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的知識(shí),后解答后面的問題:

探究:如圖,在△ABC中,已知∠B=∠C,求證:AB=AC.

證明:過點(diǎn)AADBC,垂足為D, 在△ABD與△ACD中,

B=∠C, , , 所以△ABD≌△ACD ),所以AB=AC.

1)完成上述證明中的空白;

2)已知如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.試問:AC+CDAB相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長(zhǎng)為12;(2) 反比例函數(shù)的解析式為y=一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5,

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;

2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

k=-4×3=-12,

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

A、B點(diǎn)坐標(biāo)代入y=ax+b,得

,

解得,

一次函數(shù)的解析式為y=-x+1

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

型】解答
結(jié)束】
25

【題目】如圖,已知點(diǎn)AC分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD

求證:①AB=AD;

②CD平分∠ACE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=﹣x+4分別與x軸、y軸交于點(diǎn)A,B,雙曲線k0,x0)與直線l不相交,E為雙曲線上一動(dòng)點(diǎn),過點(diǎn)EEGx軸于點(diǎn)G,EFy軸于點(diǎn)F,分別與直線l交于點(diǎn)C,D,且∠COD45°,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里.

-4,0,,-3.14717,-+5),+1.88,

1)正數(shù)集合:{};

2)負(fù)數(shù)集合:{};

3)整數(shù)集合:{};

4)分?jǐn)?shù)集合:{.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面內(nèi)給定射線OA,射線OB及∠MON,給出如下定義:若由射線OA、OB組成的∠AOB的平分線OT落在∠MON的內(nèi)部或邊OM、ON上,則稱射線OA與射線OB關(guān)于∠MON內(nèi)含對(duì)稱.例如,圖1中射線OA與射線OB關(guān)于∠MON內(nèi)含對(duì)稱

已知:如圖2,在平面內(nèi),∠AOM=10°,∠MON=20°

1)若有兩條射線,的位置如圖3所示,且,,則在這兩條射線中,與射線OA關(guān)于∠MON內(nèi)含對(duì)稱的射線是_____________

2)射線OC是平面上繞點(diǎn)O旋轉(zhuǎn)的一條動(dòng)射線,若射線OA與射線OC關(guān)于∠MON內(nèi)含對(duì)稱,設(shè)∠COM=x°,求x的取值范圍;

3)如圖4,∠AOE=EOH=2FOH=20°,現(xiàn)將射線OH繞點(diǎn)O以每秒的速度順時(shí)針旋轉(zhuǎn),同時(shí)將射線OEOF繞點(diǎn)O都以每秒的速度順時(shí)針旋轉(zhuǎn).設(shè)旋轉(zhuǎn)的時(shí)間為t秒,且.若∠FOE的內(nèi)部及兩邊至少存在一條以O為頂點(diǎn)的射線與射線OH關(guān)于∠MON內(nèi)含對(duì)稱,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別在BC,ACBDCE,AD、BE相交于點(diǎn)M

求證:(1)△AME∽△BAE;(2BD2AD×DM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠=90°,=6,點(diǎn)在邊上運(yùn)動(dòng),過點(diǎn)于點(diǎn),以、為鄰邊作設(shè)與△重疊部分圖形的面積為,線段的長(zhǎng)為(0<≤6).

(1)求線段的長(zhǎng)(用含的代數(shù)式表示)

(2)當(dāng)點(diǎn)落現(xiàn)在變上時(shí),求的值;

(3)求之間的函數(shù)關(guān)系式;

(4)直接寫出點(diǎn)到△任意兩邊所在直線的距離相等時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCABAC,點(diǎn)EBC的中點(diǎn),AEBD交于點(diǎn)F,且FAE的中點(diǎn).

(Ⅰ)求證:四邊形AECD是菱形;(Ⅱ)若AC4,AB5,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案