如圖,△ABC的頂點坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應(yīng)點為D,拋物線y=ax2﹣10ax+c經(jīng)過點C,頂點M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點D的坐標(biāo);
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.
解:(1)證明:∵A(﹣6,0),B(4,0),C(0,8),
∴AB=6+4=10,!郃B=AC。
由翻折可得,AB=BD,AC=CD!郃B=BD=CD=AC!嗨倪呅蜛BCD是菱形。
∴CD∥AB。
∵C(0,8),∴點D的坐標(biāo)是(10,8)。
(2)∵y=ax2﹣10ax+c,∴對稱軸為直線。
設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,
,解得。
∴直線BC的解析式為y=﹣2x+8。
∵點M在直線y=﹣2x+8上,∴n=﹣2×5+8=﹣2。
∴M(5,,-2).
又∵拋物線y=ax2﹣10ax+c經(jīng)過點C和M,
,解得。
∴拋物線的函數(shù)表達式為
(3)存在。點P的坐標(biāo)為P1),P2(﹣5,38)

試題分析:(1)根據(jù)勾股定理,翻折的性質(zhì)可得AB=BD=CD=AC,根據(jù)菱形的判定和性質(zhì)可得點D的坐標(biāo)。
(2)根據(jù)對稱軸公式可得拋物線的對稱軸,設(shè)M的坐標(biāo)為(5,n),直線BC的解析式為y=kx+b,根據(jù)待定系數(shù)法可求M的坐標(biāo),再根據(jù)待定系數(shù)法求出拋物線的函數(shù)表達式。
(3)分點P在CD的上面下方和點P在CD的上方兩種情況,根據(jù)等底等高的三角形面積相等可求點P的坐標(biāo):
設(shè)P,
當(dāng)點P在CD的上面下方,根據(jù)菱形的性質(zhì),知點P是AD與拋物線的交點,由A,D的坐標(biāo)可由待定系數(shù)法求出AD的函數(shù)表達式: ,二者聯(lián)立可得P1);
當(dāng)點P在CD的上面上方,易知點P是∠D的外角平分線與拋物線的交點,此時,∠D的外角平分線與直線AD垂直,由相似可知∠D的外角平分線PD的斜率等于-2,可設(shè)其為,將D(10,8)代入可得PD的函數(shù)表達式: ,與拋物線聯(lián)立可得P2(﹣5,38)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線與x軸交于點A,與y軸交于點B,將△AOB繞點O順時針旋轉(zhuǎn)90°后得到△COD.

(1)點C的坐標(biāo)是     ,線段AD的長等于     ;
(2)點M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點G,M,求拋物線的解析式;
(3)如果點E在y軸上,且位于點C的下方,點F在直線AC上,那么在(2)中的拋物線上是否存在點P,使得以C,E,F(xiàn),P為頂點的四邊形是菱形?若存在,請求出該菱形的周長l;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川眉山11分)如圖,在平面直角坐標(biāo)系中,點A、B在x軸上,點C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點,直線AD與拋物線交于另一點M.

(1)求這條拋物線的解析式;
(2)P為拋物線上一動點,E為直線AD上一動點,是否存在點P,使以點A、P、E為頂點的三角形為等腰直角三角形?若存在,請求出所有點P的坐標(biāo);若不存在,請說明理由.
(3)請直接寫出將該拋物線沿射線AD方向平移個單位后得到的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線與x軸相交于O、B,頂點為A,連接OA.

(1)求點A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線上,請說明理由;
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為   ,其中自變量x的取值范圍是   ;
(2)若當(dāng)天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為4,對稱中心為點P,點F為BC邊上一個動點,點E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對稱,設(shè)它們的面積和為S1

(1)求證:∠APE=∠CFP;
(2)設(shè)四邊形CMPF的面積為S2,CF=x,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當(dāng)圖中兩塊陰影部分圖形關(guān)于點P成中心對稱時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)、二次函數(shù)和反比例函數(shù)在同一直角坐標(biāo)系中圖象如圖,A點為(-2,0)。則下列結(jié)論中,正確的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,若動點P在拋物線y=ax2上,⊙P恒過點F(0,n),且與直線y=﹣n始終保持相切,則n=   (用含a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案