【題目】如圖,已知線段,點是線段的中點,先按要求畫圖形,再解決問題.

1)延長線段至點,使;延長線段至點,使;(尺規(guī)作圖,保留作圖痕跡)

2)求線段的長度;

3)若點是線段的中點,求線段的長度.

【答案】1)見解析;(2)線段BQ的長度為3;(3)線段PQ的長度為4.

【解析】

1)延長NM,以M為中心,MN為半徑畫圓,依次類推得出點A;延長MN,以N為中心MN為半徑畫圓,即可得出點B;

2)根據(jù)線段中點的性質(zhì)計算即可;

3)根據(jù)線段中點的性質(zhì)計算即可.

1)如圖所示:

2)∵QMN中點

MQ=NQ=1,

BN=BM

BN=MN=2,

BQ=BN+NQ=2+1=3,

即線段BQ的長度為3

3)∵AM=3MN=6,

PM=3

PQ=PM+MQ=3+1=4,

即線段PQ的長度為4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCDAC=BC,ACB=45°,將三角形ABC沿著AC翻折B落在點E處,聯(lián)結DE,那么的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解同學們每月零花錢的數(shù)額,校園小記者隨機調(diào)查了本校部分同學,根據(jù)調(diào)查結果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.

調(diào)查結果統(tǒng)計表

組別

分組(單位:元)

人數(shù)

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2

請根據(jù)以上圖表,解答下列問題:

(1)填空:這次被調(diào)查的同學共有__人,a+b=__,m=___;

(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);

(3)該校共有學生1000人,請估計每月零花錢的數(shù)額x60≤x<120范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:數(shù)和形是數(shù)學的兩個主要研究對象,我們經(jīng)常運用數(shù)形結合,樹形轉化的方法解決一些數(shù)學問題,小明在求同一坐標軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標系內(nèi)任意兩點P1x1,y1),P2x2,y2),可通過構造直角三角形利用圖1得到結論:P1P2=,他還利用圖2證明了線段P1P2的中點Pxy),P的坐標公式:x=,y=

啟發(fā)應用:

如圖3:在平面直角坐標系中,已知A8,0),B06),C17),M經(jīng)過原點O及點A,B,

1)求⊙M的半徑及圓心M的坐標;

2)判斷點C與⊙M的位置關系,并說明理由;

3)若∠BOA的平分線交AB于點N,交⊙M于點E,分別求出OE的表達式y1,過點M的反比例函數(shù)的表達式y2,并根據(jù)圖象,當y2y10時,請直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形ABCD折疊,使得對角線的兩個端點A. C重合,折痕所在直線交直線AB于點E,如果AB=4,BE=1,則BC的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,點EAB的中點,點P是對角線AC上一動點。設PC的長度為x,PEPB的長度和為y,圖②是y關于x的函數(shù)圖象,則圖象上最低點H的坐標為(

A. (1,2)B. ()C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點C、D分別在邊ON,OM上滑動,AB=9,BC=6,在滑動過程中,點A到點O的最大距離為_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的度數(shù)是的度數(shù)的k倍,則規(guī)定k倍角.

1)若∠M=21°17',則∠M5倍角的度數(shù)為 ;

2)如圖1,OB是∠AOC的平分線,OD是∠COE的平分線,若∠AOC=COE,請直接寫出圖中∠AOB的所有3倍角;

3)如圖2,若∠AOC是∠AOB5倍角,∠COD是∠AOB3倍角,且∠AOC和∠BOD互為補角,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、C的坐標分別為(﹣3,1)、(﹣4,﹣1)、(﹣1,﹣1),將△ABC先向下平移2個單位,得△A1B1C1;再將△A1B1C1沿y軸翻折180°,得△A2B2C2;.

(1)畫出△A1B1C1和△A2B2C2;

(2)求直線A2A的解析式.

查看答案和解析>>

同步練習冊答案