如圖,現(xiàn)給出四個(gè)論斷:①DB=DE;②CE=CD;③BD是△ABC的中線;④△ABC是等邊三角形.請(qǐng)以其中的三個(gè)為條件,余下的一個(gè)為結(jié)論,組成一個(gè)正確的命題(只需寫出一種),并給予證明.
已知:______,______;______.
求證:______
證明:

【答案】分析:根據(jù)等邊三角形性質(zhì)推出AB=BC,∠ABC=∠ACB=60°,根據(jù)等腰三角形性質(zhì)求出∠DBC=30°,∠E=∠CDE,根據(jù)三角形外角性質(zhì)求出∠E=30°,推出∠E=∠DBE即可.
解答:證明:∵三角形ABC是等邊三角形,
∴AB=BC,∠ABC=∠ACB=60°,
∵BD是△ABC的中線,
∴∠DBC=∠ABC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB=60°,
∴∠E=30°,
∴∠E=∠DBE,
∴DB=DE.
故答案為:△ABC是等邊三角形,BD是△ABC的中線,CD=CE,DB=DE.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),等腰三角形的性質(zhì),三角形的外角性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是求出∠E=∠DBC=30°,題目比較好,是一道開放性的題目,培養(yǎng)了學(xué)生的發(fā)散思維的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ADF與△CBE中,點(diǎn)A,E,F(xiàn),C在同一直線上,現(xiàn)給出下列四個(gè)論斷:①AE=CF;②AD=CB;③∠B=∠D;④AD∥BC.請(qǐng)你選擇其中三個(gè)作為條件,余下的一個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.請(qǐng)問:
(1)在所有構(gòu)成的命題中有假命題嗎?若有,請(qǐng)寫出它的條件和結(jié)論(用序號(hào)表示);若沒有,請(qǐng)說明理由;
(2)在所有構(gòu)成的真命題中,任意選擇一個(gè)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,現(xiàn)給出四個(gè)論斷:①DB=DE;②CE=CD;③BD是△ABC的中線;④△ABC是等邊三角形.請(qǐng)以其中的三個(gè)為條件,余下的一個(gè)為結(jié)論,組成一個(gè)正確的命題(只需寫出一種),并給予證明.
已知:
△ABC是等邊三角形
△ABC是等邊三角形
BD是△ABC中線
BD是△ABC中線
;
CD=CE
CD=CE

求證:
DB=DE
DB=DE

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,現(xiàn)給出四個(gè)論斷:①DB=DE;②CE=CD;③BD是△ABC的中線;④△ABC是等邊三角形.請(qǐng)以其中的三個(gè)為條件,余下的一個(gè)為結(jié)論,組成一個(gè)正確的命題(只需寫出一種),并給予證明.
已知:________,________;________.
求證:________
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ADF與△CBE中,點(diǎn)A,E,F(xiàn),C在同一直線上,現(xiàn)給出下列四個(gè)論斷:①AE=CF;②AD=CB;③∠B=∠D;④AD∥BC.請(qǐng)你選擇其中三個(gè)作為條件,余下的一個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.請(qǐng)問:
(1)在所有構(gòu)成的命題中有假命題嗎?若有,請(qǐng)寫出它的條件和結(jié)論(用序號(hào)表示);若沒有,請(qǐng)說明理由;
(2)在所有構(gòu)成的真命題中,任意選擇一個(gè)加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案