【題目】如圖,拋物線y=x2+bx+cx軸交于AB兩點(diǎn),B點(diǎn)坐標(biāo)為(30),與y軸交于點(diǎn)C0﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線lmx軸圍成的三角形和直線l、my軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.

【答案】(1;(2P點(diǎn)坐標(biāo)為(, )時(shí),四邊形ABPC的面積最大,最大面積為;(3)存在,

【解析】試題分析:(1)由B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;

2)連接BC,則△ABC的面積是不變的,過PPM∥y軸,交BC于點(diǎn)M,設(shè)出P點(diǎn)坐標(biāo),可表示出PM的長(zhǎng),可知當(dāng)PM取最大值時(shí)△PBC的面積最大,利用二次函數(shù)的性質(zhì)可求得P點(diǎn)的坐標(biāo)及四邊形ABPC的最大面積;

3)設(shè)直線my軸交于點(diǎn)N,交直線l于點(diǎn)G,由于∠AGP=∠GNC+∠GCN,所以當(dāng)△AGB△NGC相似時(shí),必有∠AGB=∠CGB=90°,則可證得△AOC≌△NOB,可求得ON的長(zhǎng),可求出N點(diǎn)坐標(biāo),利用BN兩的點(diǎn)坐標(biāo)可求得直線m的解析式.

試題解析:

1)把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得: ,解得: 拋物線解析式為;

2)如圖1,連接BC,過Py軸的平行線,交BC于點(diǎn)M,交x軸于點(diǎn)H,

中,令y=0可得,解得x=﹣1x=3,A點(diǎn)坐標(biāo)為(﹣10),AB=3﹣﹣1=4,且OC=3,SABC=ABOC=×4×3=6,B30),C0﹣3),直線BC解析式為y=x﹣3,設(shè)P點(diǎn)坐標(biāo)為(x,),則M點(diǎn)坐標(biāo)為(x,x﹣3),P點(diǎn)在第四限,PM==SPBC=PMOH+PMHB=MOH+HB=PMOB=PM,當(dāng)PM有最大值時(shí),PBC的面積最大,則四邊形ABPC的面積最大,PM==,當(dāng)x=時(shí),PMmax=,則SPBC==,此時(shí)P點(diǎn)坐標(biāo)為(, ),S四邊形ABPC=SABC+SPBC=6+=,即當(dāng)P點(diǎn)坐標(biāo)為(, )時(shí),四邊形ABPC的面積最大,最大面積為;

3)如圖2,設(shè)直線my軸于點(diǎn)N,交直線l于點(diǎn)G,則AGP=GNC+GCN,當(dāng)AGBNGC相似時(shí),必有AGB=CGB,又AGB+CGB=180°,∴∠AGB=CGB=90°∴∠ACO=OBN,在RtAONRtNOB中,∵∠AOC=NOB,OC=OB,ACO=NBORtAONRtNOBASA),ON=OA=1N點(diǎn)坐標(biāo)為(0,﹣1),設(shè)直線m解析式為y=kx+d,把B、N兩點(diǎn)坐標(biāo)代入可得,解得:,直線m解析式為,即存在滿足條件的直線m,其解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,以AB為邊在正方形內(nèi)作等邊△ABE,連接DE,CE,則∠CED的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為,長(zhǎng)為米,釣竿的傾斜角是,其長(zhǎng)為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式2a4﹣3a2b2+4的常數(shù)項(xiàng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上不與點(diǎn)A,B重合,點(diǎn)F在BC邊上不與點(diǎn)B,C重合

第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;

第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;依次操作下去

1圖2中的EFD是經(jīng)過兩次操作后得到的,其形狀為 ,

2若經(jīng)過三次操作可得到四邊形EFGH.

請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;

中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x,y滿足(x2+y2+2)(x2+y22=0.則x2+y2的值為( 。

A. 1B. 2C. 2 或﹣1D. 2或﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知 ,用含a,b的式子表示下列代數(shù)式。
①求: 的值 ②求: 的值
(2)已知 ,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)OAECF

(1)求證:BOE≌△DOF;

(2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果等腰三角形一腰上的高與另一腰的夾角為45°,那么這個(gè)等腰三角形的底角度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案