請寫出一個圖象的對稱軸為y軸,且經(jīng)過點(2,-4)的二次函數(shù)解析式,這個二次函數(shù)的解析式可以是   
【答案】分析:由于二次函數(shù)的對稱軸為y軸,故x=-=0,由于a≠0,故b=0,所以二次函數(shù)解析式為y=ax2+c.
將(2,-4)代入解析式,得到關(guān)于a、c的關(guān)系式,從而推知a、c的值.
解答:解:∵對稱軸為y軸,
∴設(shè)二次函數(shù)解析式為y=ax2+c,
將(2,-4)代入解析式,得4a+c=-4,
不防取a=-1,c=0,得解析式為y=-x2.答案不唯一.
故答案為:y=-x2等(滿足4a+c=-4即可).
點評:此題考查了二次函數(shù)的性質(zhì),要熟悉對稱軸公式、二次函數(shù)成立的條件,要注意此題具有開放性,答案不唯一.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知正比例函數(shù)y1=x,反比例函數(shù)y2=
1
x
,由y1,y2構(gòu)造一個新函數(shù)y=x+
1
x
其圖象如圖所示.(因其圖精英家教網(wǎng)象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個命題:
①該函數(shù)的圖象是中心對稱圖形;
②當x<0時,該函數(shù)在x=-1時取得最大值-2;
③y的值不可能為1;
④在每個象限內(nèi),函數(shù)值y隨自變量x的增大而增大.
其中正確的命題是
 
.(請寫出所有正確的命題的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料再回答問題:
對于函數(shù)y=x2,當x=1時,y=1,當x=-1時,y=1;當x=2時,y=4,當x=-2時,y=4;…
而點(1,1)與(-1,1),(2,4)與(-2,4),…,都關(guān)于y軸對稱.顯然,如果點(x0,y0)在函數(shù)y=x2的圖象上,那么,它關(guān)于y軸對稱的點(-x0,y0)也在函數(shù)y=x2的圖象上,這時,我們說函數(shù)y=x2關(guān)于y軸對稱.
一般地,如果對于一個函數(shù),當自變量x在允許范圍內(nèi)取值時,若x=x0和x=-x0時,函數(shù)值都相等,我們說函數(shù)的圖象關(guān)于y軸對稱.
問題:
(1)對于函數(shù)y=x3,當自變量x取一對相反數(shù)時,函數(shù)值也得到一對相反數(shù),則函數(shù)y=x3的圖象關(guān)于
原點
原點
對稱.(“x軸”、“y軸”或“原點”).
(2)下列函數(shù):①y=x3+2x;②y=2x4+4x2;③y=x+
1
x
;④y=-x-2 中,其圖象關(guān)于y軸對稱的有
②④
②④
,關(guān)于原點對稱的有
①③
①③
(只填序號).
(3)請你寫出一個我們學過的函數(shù)關(guān)系式
y=
k
x
(k≠0)
y=
k
x
(k≠0)
,其圖象關(guān)于直線y=x對稱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

作一個圖形關(guān)于一條直線的軸對稱圖形,再將這個軸對稱圖形沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做關(guān)于這條直線的滑動對稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1),結(jié)合軸對稱和平移的有關(guān)性質(zhì),解答以下問題:精英家教網(wǎng)
(1)如圖2,在關(guān)于直線l的滑動對稱變換中,試證明:兩個對應(yīng)點A,A′的連線被直線l平分;
(2)若點P是正方形ABCD的邊AD上的一點,點P關(guān)于對角線AC滑動對稱變換的對應(yīng)點P′也在正方形ABCD的邊上,請僅用無刻度的直尺在圖3中畫出P′;
(3)定義:若點M到某條直線的距離為d,將這個點關(guān)于這條直線的對稱點N沿著與這條直線平行的方向平移到點M′的距離為s,稱[d,s]為點M與M′關(guān)于這條直線滑動對稱變換的特征量.如圖4,在平面直角坐標系xOy中,點B是反比例函數(shù)y=
3x
的圖象在第一象限內(nèi)的一個動點,點B關(guān)于y軸的對稱點為C,將點C沿平行于y軸的方向向下平移到點B′.
①若點B(1,3)與B′關(guān)于y軸的滑動對稱變換的特征量為[m,m+4],判斷點B′是否在此函數(shù)的圖象上,為什么?
②已知點B與B′關(guān)于y軸的滑動對稱變換的特征量為[d,s],且不論點B如何運動,點B′也都在此函數(shù)的圖象上,判斷s與d是否存在函數(shù)關(guān)系?如果是,請寫出s關(guān)于d的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知一個函數(shù)具有以下條件:
①它的圖象經(jīng)過第四象限;
②當x>0時,y隨x的增大而增大;
③函數(shù)的圖象關(guān)于原點成中心對稱.
請寫出一個符合上述條件的函數(shù)表達式:________.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省泰興市黃橋區(qū)九年級中考一模數(shù)學試卷(解析版) 題型:填空題

已知正比例函數(shù)反比例函數(shù)構(gòu)造一個新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)”).給出下列幾個命題:

①該函數(shù)的圖象是中心對稱圖形;

②當時,該函數(shù)在時取得最大值-2;

的值不可能為1;

④在每個象限內(nèi),函數(shù)值隨自變量的增大而增大.

其中正確的命題是         .(請寫出所有正確的命題的序號)

 

查看答案和解析>>

同步練習冊答案