【題目】四邊形 ABCD 中,E 為邊 BC 上一點(diǎn),F 為邊 CD 上一點(diǎn),且∠AEF=90°.
(1)如圖 1,若 ABCD 為正方形,E 為 BC 中點(diǎn),求證:.
(2)若 ABCD 為平行四邊形,∠AFE=∠ADC,
①如圖 2,若∠AFE=60°,求的值;
②如圖 3,若 AB=BC,EC=2CF.直接寫出 cos∠AFE 值為 .
【答案】(1)見解析(2)(3)
【解析】
(1)如圖1中,設(shè)正方形的邊長為2a.只要證明△ABE∽△ECF,可得,求出CF、DF即可解決問題;
(2)如圖2中,在AD上取一點(diǎn)H,使得FH=DF.只要證明△AEF是等邊三角形,推出AF=2EF,再證明△AHF∽△FCE,可得EC:HF=EF:AF=1:2;
(3)如圖3,作FT=FD交AD于點(diǎn)T,作FH⊥AD于H,證△FCE∽△ATF,設(shè)CF=2,則CE=4,可設(shè)AT=x,則TF=2x,AD=CD=2x+2,DH=DT=,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.
(1)證明:如圖1中,設(shè)正方形的邊長為2a.
∵四邊形ABCD是正方形,
∴∠B=∠C=90°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,∠FEC+∠EFC=90°,
∴∠AEB=∠EFC,
∴△ABE∽△ECF,
∴
∵BE=EC=a,AB=CD=2a,
∴CF=a,DF=CDCF=a,
∴ ;
(2)如圖2中,在AD上取一點(diǎn)H,使得FH=DF,
∵∠AEF=90°,∠AFE=∠D=60°,
∴AF=2EF,
∵FH=DF,
∴△DHF是等邊三角形,
∴∠FHD=60°,
∴∠AHF=120°,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠C=180°∠D=120°,
∴∠AHF=∠C,
∵∠AFC=∠D+∠FAH=∠EFC+∠AFE,∠AFE=∠D,
∴∠HAF=∠EFC,
∴△AHF∽△FCE,
∴EC:HF=EF:AF=1:2,
∴;
如圖3,作FT=FD交AD于點(diǎn)T,作FH⊥AD于H
則∠FTD=∠FDT,
∴180°∠FTD=180°∠D,
∴∠ATF=∠C,
又∵∠TAF+∠D=∠AFE+∠CFE,且∠D=∠AFE,
∴∠TAF=∠CFE,
∴△FCE∽△ATF,
∴=,
設(shè)CF=2,則CE=4,可設(shè)AT=x,則TF=2x,AD=CD=2x+2,
∴DH=DT=,且,
由cos∠AFE=cos∠D,得,
解得x=6,(x=0舍去)
∴cos∠AFE==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做游戲:游戲者分別轉(zhuǎn)動(dòng)如圖的兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤各一次,當(dāng)兩個(gè)轉(zhuǎn)盤的指針?biāo)笖?shù)字都為x2﹣4x+3=0的根時(shí),他就可以獲得一次為大家表演節(jié)目的機(jī)會(huì).
(1)利用樹狀圖或列表的方法(只選一種)表示出游戲可能出現(xiàn)的所有結(jié)果;
(2)求小明參加一次游戲就為大家表演節(jié)目的機(jī)會(huì)的概率是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以AB為直徑的分別與交于點(diǎn),過點(diǎn)作于點(diǎn).
(1)求證:DF是的切線;
(2)若的半徑為3,,求陰影部分的面積;
(3)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題的逆命題是真命題的是( )
A.兩直線平行,同位角相等
B.等邊三角形是銳角三角形
C.如果兩個(gè)實(shí)數(shù)是正數(shù),那么它們的積是正數(shù)
D.全等三角形的對應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點(diǎn),且AB=AE,若AE平分∠DAB,∠EAC=25°,則∠AED的度數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2分別是一滑雪運(yùn)動(dòng)員在滑雪過程中某一時(shí)刻的實(shí)物圖與示意圖,已知運(yùn)動(dòng)員的小腿與斜坡垂直,大腿與斜坡平行,且三點(diǎn)共線,若雪仗長為,,,求此刻運(yùn)動(dòng)員頭部到斜坡的高度(精確到)(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是矩形中邊上一點(diǎn),沿折疊為,點(diǎn)落在上.
(1)求證:;
(2)若,求的值;
(3)設(shè),是否存在的值,使與相似?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平行四邊形中,點(diǎn)為邊上一點(diǎn),過點(diǎn)作于點(diǎn),
(1)如圖1,連接,若點(diǎn)為中點(diǎn),,,,求的長.
(2)如圖2,作的平分線交于點(diǎn),連接,若,為等邊三角形,且,,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com