科目:初中數學 來源: 題型:
如圖10,四邊形OMTN中,OM=ON,TM=TN,我們把這種兩組鄰邊分別相等的四邊形叫做箏形.
(1)試探究箏形對角線之間的位置關系,并證明你的結論;
(2)在箏形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC為對角線,BD=8.
①是否存在一個圓使得A,B,C,D四個點都在這個圓上?若存在,求出圓的半徑;若不存在, 請說明理由;
②過點B作BF⊥CD,垂足為F,BF交AC于點E,連接DE.當四邊形ABED為菱形時,求點F到AB 的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
某農業(yè)觀光園計劃將一塊面積為900m2的園圃分成A,B,C三個區(qū)域,分別種植甲、乙、丙三種花卉,且每平方米栽種甲3株或乙6株或丙12株。已知B區(qū)域面積是A的2倍,設A區(qū)域面積為。
(1)求該園圃栽種的花卉總株數關于的函數表達式;
(2)若三種花卉共栽種6600株,則A,B,C三個區(qū)域的面積分別是多少?
(3)已知三種花卉的單價(都是整數)之和為45元,且差價均不超過10元,在(2)的前提下,全部栽種共需84000元,請寫出甲、乙、丙三種花卉中,種植面積最大的花卉總價
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com