【題目】如圖是用長度相等的小棒按一定規(guī)律擺成的一組圖案

1)填寫下表:

圖形序號

……

每個圖案中小棒的數(shù)量

6

11

……

2)請?zhí)顚懗龅?/span>個圖案中小棒的數(shù)量(用含的代數(shù)式表示);

3)第30個圖案中小棒有多少根?

【答案】116,41;(25n+1;(3)第30個圖案中小棒有151.

【解析】

1)觀察圖形可知,圖案中小棒的個數(shù)依次增加5根,然后計算即可;

2)總結(jié)規(guī)律可得第個圖案中小棒的數(shù)量為:5n+1;

3)將n=30代入5n+1計算即可.

解:(1)由圖可知:

第①個圖案有6根小棒,

第②個圖案中有11根小棒,

第③個圖案中有16根小棒……

∴圖案中小棒的個數(shù)依次增加5根,

可得第⑧個圖案中有41根小棒,

故答案為:16,41;

2)∵第①個圖案有61+5×1根小棒,

第②個圖案中有111+5×2根小棒,

第③個圖案中有161+5×3根小棒……

∴第個圖案中小棒的數(shù)量為:5n+1

3)當(dāng)n=30時,5n+1=151(根),

∴第30個圖案中小棒有151.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊ABD點,交邊ACE點,若△ABC△EBC的周長分別是40cm24cm,則AB= cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中C點坐標(biāo)為(1,2).

1)寫出點A,B的坐標(biāo):A )、B );

2)判斷△ABC的形狀 ;計算△ABC的面積是 .

3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到,則的三個頂點坐標(biāo)分別是 ), ), .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),C→B→A的路徑,以2cm每秒的速度運動,設(shè)運動時間為t.

(1) 當(dāng)t=1時,求△ACP的面積

(2) t為何值時,線段AP是∠CAB的平分線?

(3) 請利用備用圖2繼續(xù)探索:當(dāng)t為何值時,△ACP是以AC為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個箱子內(nèi)有4顆相同的球,將4顆球分別標(biāo)示號碼1、2、3、4,今翔翔以每次從箱子內(nèi)取一顆球且取后放回的方式抽取,并預(yù)計取球10次,現(xiàn)已取了8次,取出的結(jié)果如表所列:

次數(shù)

1

2

3

4

5

6

7

8

9

10

號碼

1

3

4

4

2

1

4

1

若每次取球時,任一顆球被取到的機會皆相等,且取出的號碼即為得分,請回答下列問題:

(1)請求出第1次至第8次得分的平均數(shù).

(2)承(1),翔翔打算依計劃繼續(xù)從箱子取球2次,請判斷是否可能發(fā)生「這10次得分的平均數(shù)不小于2.2,且不大于2.4」的情形?若有可能,請計算出發(fā)生此情形的機率,并完整寫出你的解題過程;若不可能,請完整說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點OABC的兩邊AB、AC所在直線的距離相等,且OBOC。

1)如圖①,若點OBC上,求證:ABAC

2)如圖②,若點OABC的內(nèi)部,上題的結(jié)論還成立嗎?為什么?

3)若點OABC的外部,ABAC成立嗎?請畫圖表示。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,F為邊AB的中點,DF與對角線AC交于點G,過點GGE⊥AD于點E.AB=2,且∠1=∠2,則下列結(jié)論:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFOC=.其中正確的有(

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案