某個(gè)反比例函數(shù)的圖象如圖所示,根據(jù)圖象提供的信息,求反比例函數(shù)的解析式.

 

【答案】

【解析】

試題分析:設(shè)反比例函數(shù)的解析式為,根據(jù)圖象過點(diǎn)(-1,2)即可根據(jù)待定系數(shù)法求得反比例函數(shù)的解析式.

設(shè)反比例函數(shù)的解析式為

圖象過點(diǎn)(-1,2)

∴反比例函數(shù)的解析式為

考點(diǎn):待定系數(shù)法求函數(shù)關(guān)系式

點(diǎn)評(píng):待定系數(shù)法求函數(shù)關(guān)系式是函數(shù)問題中極為重要的方法,是中考的熱點(diǎn),在各種題型中均有出現(xiàn),一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某個(gè)反比例函數(shù)的圖象經(jīng)過點(diǎn)P(-1,-1),則它的解析式可以是( 。
A、y=
1
x
(x>0)
B、y=-
1
x
(x>0)
C、y=
1
x
(x<0)
D、y=-
1
x
(x<0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),∠OBA=90°,BC∥OA,OB=8,點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度沿BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度沿OB向點(diǎn)B運(yùn)動(dòng).現(xiàn)點(diǎn)E、F同時(shí)出發(fā),當(dāng)點(diǎn)F到達(dá)點(diǎn)B時(shí),E、F兩點(diǎn)同時(shí)停止運(yùn)動(dòng).
(1)求梯形OABC的高BG的長(zhǎng);
(2)連接E、F并延長(zhǎng)交OA于點(diǎn)D,當(dāng)E點(diǎn)運(yùn)動(dòng)到幾秒時(shí),四邊形ABED是等腰梯形;
(3)動(dòng)點(diǎn)E、F是否會(huì)同時(shí)在某個(gè)反比例函數(shù)的圖象上?如果會(huì),請(qǐng)直接寫出這時(shí)動(dòng)精英家教網(wǎng)點(diǎn)E、F運(yùn)動(dòng)的時(shí)間t的值;如果不會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,6)、B(3,4)在某個(gè)反比例函數(shù)的圖象上.
(1)求此反比例函數(shù)的解析式;
(2)若直線y=mx與線段AB相交,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),點(diǎn)C(0,6),BC∥OA,OB=10,點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度沿BC向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度沿OB向點(diǎn)B運(yùn)動(dòng),現(xiàn)點(diǎn)E、F同時(shí)出發(fā),連接EF并延長(zhǎng)交OA于點(diǎn)D,當(dāng)F點(diǎn)到達(dá)B點(diǎn)時(shí),E、F兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒
(1)當(dāng)四邊形ABED是平行四邊形時(shí),求t的值;
(2)當(dāng)△BEF的面積最大時(shí),求t的值;
(3)當(dāng)以BE為直徑的圓經(jīng)過點(diǎn)F時(shí),求t的值;
(4)當(dāng)動(dòng)點(diǎn)E、F會(huì)同時(shí)在某個(gè)反比例函數(shù)的圖象上時(shí),求t的值.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,6)、B(3,4)在某個(gè)反比例函數(shù)的圖象上,求此反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案